
Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 1

Structural Programming
and Data Structures

Dr. Osmar R. Zaïane

University of Alberta

Winter 2000

CMPUT 102: Object State

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 2

• Vectors
• Testing/Debugging
• Arrays
• Searching
• Files I/O
• Sorting
• Inheritance
• Recursion

2

Course Content

• Introduction
• Objects
• Methods
• Tracing Programs
• Object State
• Sharing resources
• Selection
• Repetition

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 3

Objectives of Lecture 12

• Understand the state of an object.

• Implement classes with objects that have a
state.

• Re-write the Adventure program such that we
have many classes and objects with states.

Implementing Classes Implementing Classes –– Object StateObject State

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 4

Outline of Lecture 12
• Re-visit the Tune program.

• Using a class

• Instance variables for object state

• Syntax for instance variable references

• Accessing the state of the current object -this

• Example class implementation - Adventurer in
Adventure Version 3

• Managing multiple classes in Code Warrior

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 5

public class Tunes {
/*

Creates a collection of CDs. Adds CDs to the collection
and displays a summary of the collection value.

*/

public static void main(String args[]) {

/* Program statements go here */

CD_Collection music;

music = new CD_Collection(5, 50.00f);

music.addCDs(1, 10.99f);
music.addCDs(3, 20.99f);
music.displayCDs();

}
}

class CD_Collection {
/* Monitors the value of a collection of musical CDs. */

/* Private instance variables */

private int numCDs;
private float valueCDs;

public CD_Collection (int initialNum, float initialVal) {
/*

Initializes the collection with the given number of CDs
and the given value of the CD collection.

*/

this.numCDs = initialNum;
this.valueCDs = initialVal;

}

public void add_cds(int number, float value) {
/*

Adds CDs to the collection and adjusts the total value.
*/

this.numCDs = this.numCDs + number;
this.valueCDs = this.valueCDs + value;

}

public void displayCDs() {
/*

Displays the number of CDs in the collection and the total
value of the collection.

*/

System.out.println("=================================");
System.out.print ("Total Number of CDs: ");
System.out.println(this.numCDs);
System.out.print ("Total Value of Collection: ");
System.out.println(this.valueCDs);
System.out.print ("Average cost per CD: $");
System.out.println(this.averageCost());
System.out.println("=================================");

}

private float averageCost() {
/*

Determines the average cost of a CD in the collection.
*/

float average;

average = this.valueCDs/this.numCDs;

return average;
}

}

numCDs
valueCDs

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 6

Outline of Lecture 12
• Re-visit the Tune program.

• Using a class

• Instance variables for object state

• Syntax for instance variable references

• Accessing the state of the current object -this

• Example class implementation - Adventurer in
Adventure Version 3

• Managing multiple classes in Code Warrior

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 7

Using a Class

• To use a class we only need to know the
class protocol:
– a list of public variables

– a list of constructors

– a list of instance messages

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 8

Using Class Adventurer

• Consider the protocol for an Adventurer class that
has no public variables, has instance messages:
publicString name()

public Integer tokens()

publicvoid gainTokens(int gain)

publicvoid loseTokens(int loss)

publicvoid reportTokens()

and has a constructor:
publicAdventurer(String name)

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 9

Request Messages

• Recall that an object must be able to return an
object or value when a message is sent to it.

• For example, an Adventurer object must return
a String in response to the name message.

• How do we implement such messages?
– let an object “remember” all “requestable” objects

– ask another object for the requested object

– compute a new object built from other objects

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 10

Outline of Lecture 12
• Re-visit the Tune program.

• Using a class

• Instance variables for object state

• Syntax for instance variable references

• Accessing the state of the current object -this

• Example class implementation - Adventurer in
Adventure Version 3

• Managing multiple classes in Code Warrior

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 11

Remembering versus Computing

• An object only needs to remember enough
information to satisfy its protocol.

• For example, if a Person object must respond
to the messages age() and birthDate(), it is
sufficient to remember a birth-date object.

• An age object can then be computed from the
birth-date object and a current date object.

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 12

Object State

• The stateof an object is the set of objects and
values that an object “remembers”.

• We use variables to remember this information.

• When a class is implemented we declare one
instance variablefor each object or value that
an instance of that class must remember.

• Like other variables, each instance variable has
a name and declared type.

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 13

Object State for Adventurer

• The state of an Adventurer object consists
of two instance variables.

• The first is called namewith declared class,
String.

• The second is called tokenswith declared
type int.

• Alternately we could have declared tokens
to have type Integer.

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 14

Instance Variables
• The lifetime of an instance variable is the lifetime

of the object that contains it.

• For example, the Adventurer name instance
variable can be used as soon as an Adventurer
object is created and lasts until the object is
destroyed.

• A Java object is destroyed when no object
reference refers to it anymore.

• The scope of an instance variable is either public
or private.

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 15

Outline of Lecture 12
• Re-visit the Tune program.

• Using a class

• Instance variables for object state

• Syntax for instance variable references

• Accessing the state of the current object -this

• Example class implementation - Adventurer in
Adventure Version 3

• Managing multiple classes in Code Warrior
Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 16

Public Instance Variables
• A public instance variablecan be accessed

from anywhere in the program.

• For example the class Point has two public
instance variables called x and y, representing
its x and y coordinates.

• The object that an instance variable is bound
to can be accessed using:
<obj ref> . <instance var name>

• For example:
aPoint.x

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 17

Private Instance Variables

• A private instance variablecan be accessed
only in the methods of the class that defines it.

• For example, if we declare an instance variable
in the Adventurer class:
privateString name;

then we could not use the expression:
anAdventurer.name

in some other class like the Adventure class or
Room class.

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 18

No Public Instance Variables
• Some programmers never declare any public

instance variables.

• If public access is required then a message is
provided that returns the object bound to the
instance variable.

• If public modification is required then a
message is provided that binds the instance
variable to an argument object.

• This approach has some program maintenance
advantages.

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 19

Outline of Lecture 12
• Re-visit the Tune program.

• Using a class

• Instance variables for object state

• Syntax for instance variable references

• Accessing the state of the current object -this

• Example class implementation - Adventurer in
Adventure Version 3

• Managing multiple classes in Code Warrior
Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 20

Instance Variables and this

• Recall that inside of a method, the object
reference this can be used to send a message
to the current object :
this.greeting()

• It can also be used to access an instance
variable of the current object:
this.tokens

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 21

Class Implementations
• A class implementationcontains:

– a list of instance variable declarations.

– a method that implements each message in the
protocol, including the constructors.

– code to create any public objects.

• In Java, the class implementation must be
stored in a file whose file name is
“Classname.java”.

• This means that if you have multiple classes in
a program, you will have multiple files.

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 22

Outline of Lecture 12
• Re-visit the Tune program.

• Using a class

• Instance variables for object state

• Syntax for instance variable references

• Accessing the state of the current object -this

• Example class implementation - Adventurer in
Adventure Version 3

• Managing multiple classes in Code Warrior

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 23

Implementing Class Adventurer (1)

• In the Adventurer class, we will declare two
private instance variables :
privateString name;

privateint tokens;

• We will implement a method for the
constructor:
publicAdventurer(String nameString)

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 24

Implementing Class Adventurer (2)

• We will also implement methods for each
instance message :
publicString name()

public int tokens()

publicvoid gainTokens(int anInt)

publicvoid loseTokens(int anInt)

publicvoid reportTokens()

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 25

Class - Adventurer 3.1

public classAdventurer{
/*

An instance of this class represents a player of the Adventure game.
*/

/* Constructors */
publicAdventurer(String nameString) {
/*

Initialize me with the given name and zero tokens.
*/

this.name = nameString;
this.tokens = 0;

}

an object reference to the current object.

an instance variable object reference

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 26

Class - Adventurer 3.2
/* Instance Methods */

publicString name() {
/*

Answer a String representing my name.
*/

returnthis.name;
}

public int tokens() {
/*

Answer my number of Tokens.
*/

returnthis.tokens;
}

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 27

Class - Adventurer 3.3

publicvoid gainTokens(int anInt) {
/*

Add the given number of tokens to my total.
*/

this.tokens = this.tokens + anInt;
}

publicvoid loseTokens(int anInt) {
/*

Remove the given number of tokens from my total.
*/

this.tokens = this.tokens - anInt;
}

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 28

Class - Adventurer 3.4

publicvoid reportTokens() {
/*

Output the number of tokens I have.
*/

System.out.print("You have");
System.out.print(this.tokens);
System.out.println(" tokens in your pocket.");

}

/* Private Instance Variables */

privateString name;

privateint tokens;

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 29

The Revised Adventure Program

• Given this Adventurer class, the Adventure
game can be rewritten to use this class.

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 30

Program - Adventure 3.1
import java.util.*;
public classAdventure{

/* Version 3

This program is an arithmetic adventure game ...

*/

/* Constructors */
public Adventure () {
/*

Initialize an adventure by creating the appropriate
objects.

*/
}

NO CHANGES

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 31

Program - Adventure 3.2

/* Main program */

public static voidmain(String args[]) {
Adventure game;

game = new Adventure();
game.play();

}

NO CHANGES

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 32

Program - Adventure 2.3

/* Private Instance Methods */
private voidplay() {
/*

Play the Adventure game.
*/

String name;
Integer tokens;

name = this.greeting();
tokens = this.enterRoom(name);
this.farewell(name, tokens);

}

OLD

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 33

Program - Adventure 3.3

/* Private Instance Methods */

private voidplay() {
/*

Plays the Adventure game.
*/

Adventurer adventurer;

adventurer = this.greeting();
this.enterRoom(adventurer);
this.farewell(adventurer);

}

NEW

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 34

Program - Adventure 2.4

private voidfarewell(String userName,
Integer tokenCount) {

/*
Say farewell to the user with the given name and
report the given count of tokens earned.

*/

System.out.print("Congratulations ");
System.out.print(userName);
System.out.print(" you have left the game with ");
System.out.print(tokenCount);
System.out.println(" tokens.");

}

OLD

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 35

Program - Adventure 3.4

private voidfarewell(Adventurer adventurer) {
/*

Say farewell to the user and report the game result.
*/

System.out.print("Congratulations ");
System.out.print(adventurer.name());
System.out.print(" you have left the game with ");
System.out.print(adventurer.tokens());
System.out.println(" tokens.");

}

NEW

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 36

Program - Adventure 2.5
privateString greeting() {
/*

Greet the user and answer a String that represents
the player’s name.

*/
String playerName;

System.out.println("Welcome to the Arithmetic Adventure game.");
System.out.print("The date is ");
System.out.println(new Date());
System.out.println();
System.out.print("What is your name?");
playerName = Keyboard.in.readString();

OLD

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 37

Program - Adventure 2.6

System.out.print("Well ");
System.out.print(playerName);
System.out.println(", after a day of hiking you spot a silver cube.");
System.out.println("The cube appears to be about 5 meters on each side.");
System.out.println("You find a green door, open it and enter.");
System.out.println("The door closes behind you with a soft whir and disappears.");
System.out.println("There is a feel of mathematical magic in the air.");
Keyboard.in.pause();
returnplayerName;

}

OLD

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 38

Program - Adventure 3.5

privateAdventurer greeting() {
/*

Greet the user and answer an Adventurer that
represents the user.

*/
String playerName;

System.out.println("Welcome to the Arithmetic Adventure game.");
System.out.print("The date is ");
System.out.println(new Date());
System.out.println();
System.out.print("What is your name?");
playerName = Keyboard.in.readString();

NEW

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 39

Program - Adventure 3.6

System.out.print("Well ");
System.out.print(playerName);
System.out.println(", after a day of hiking you spot a silver cube.");
System.out.println("The cube appears to be about 5 meters on each side.");
System.out.println("You find a green door, open it and enter.");
System.out.println("The door closes behind you with a soft whir and disappears.");
System.out.println("There is a feel of mathematical magic in the air.");
Keyboard.in.pause();
returnnew Adventurer(playerName);

}

NEW

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 40

Program - Adventure 2.7
privateInteger enterRoom(String theName) {
/*

The user with the given name has entered the
first room. After the adventure is done, return the
number of tokens obtained during the game.

*/
Integer myTokens;

System.out.print("How many tokens would you like, ");
System.out.print(theName);
System.out.print("?");
myTokens = Keyboard.in.readInteger();
returnmyTokens;

}

OLD

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 41

Program - Adventure 3.7

privatevoid enterRoom(Adventurer adventurer) {
/*

The given adventurer has entered the
first room.

*/
Integer myTokens;

System.out.print("How many tokens would you like, ");
System.out.print(adventurer.name());
System.out.print("?");
myTokens = Keyboard.in.readInteger();
adventurer.gainTokens(myTokens.intValue());

}

NEW

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 42

Outline of Lecture 12
• Re-visit the Tune program.

• Using a class

• Instance variables for object state

• Syntax for instance variable references

• Accessing the state of the current object -this

• Example class implementation - Adventurer in
Adventure Version 3

• Managing multiple classes in Code Warrior

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 43

Demonstration Adventure 3

• Enter the Adventure Version 3 code into
CodeWarrior in two separate classes.

• Add the file Adventurer.java to the project.

• Compile and run.

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 44

Debugger Object State

• A demonstration of object state inspection
for Adventure Version 3 in the debugger
will be given in the lab next week.

