
Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 1

Structural Programming
and Data Structures

Dr. Osmar R. Zaïane

University of Alberta

Winter 2000

CMPUT 102: Simple Program

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 2

• Vectors
• Testing/Debugging
• Arrays
• Searching
• Files I/O
• Sorting
• Inheritance
• Recursion

2

Course Content

• Introduction
• Objects
• Methods
• Tracing Programs
• Object State
• Sharing resources
• Selection
• Repetition

Lecture 6, 7, 8, 9: Simple Program

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 3

Objectives of Lecture 6

• Understand the types of errors that can be
found in a Java program.

• Get a basic idea about what a Java compiler
goes through to parse a Java program.

• Understand the importance of syntax rules.

• Translate the computation diagrams into
Java statements.

Programming Language SyntaxProgramming Language Syntax

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 4

Outline of Lecture 6

• Program errors

• Grammars, syntax and BNF

• Tokens

• Identifiers

• Literals

• Semantics

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 5

Program Errors

• There are four kinds of errors you can make
when writing a program:
– insignificant errors

– compile-time errors

– run-time errors

– semantic errors

Syntax error

bug

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 6

Program - Adventure V0

public classAdventure{

/* Version 0

This program is an arithmetic adventure game where an adventurer
navigates rooms that contain treasure chests that are opened by
correctly answering arithmetic problems.

*/

public static voidmain(String args[]) {

/* Program statements go here. */

System.out.println("Welcome to the Arithmetic Adventure game.");

}

}

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 7

Program - Adventure V0
without comments

public classAdventure{

public static voidmain(String args[]) {

System.out.println("Welcome to the Arithmetic Adventure game.");

}

}

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 8

Insignificant Errors

public classAdventure{

/* Version 0

This program is an arithmetic adventure game where an adventurer
navigates rooms that contain treasure chests that are opened by
correctly answering arithmetic problems.

*/

public static voidmain(String args[]) {

/* Program statements go here. */

System.out.println("Welcome to the Arithmetic Adventure game.");

}

}

If we mis-spell or leave out any red
word this program works the same.

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 9

Compilation Errors

public classAdventure{

/* Version 0

This program is an arithmetic adventure game where an adventurer
navigates rooms that contain treasure chests that are opened by
correctly answering arithmetic problems.

*/

public static voidmain(String args[]) {

/* Program statements go here. */

System.out.println("Welcome to the Arithmetic Adventure game.");

}

}

If we mis-spell or leave out any of these
words the program won’t compile.

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 10

Run-time Errors

public classAdventure{

/* Version 0

This program is an arithmetic adventure game where an adventurer
navigates rooms that contain treasure chests that are opened by
correctly answering arithmetic problems.

*/

public static voidmain(String args[]) {

/* Program statements go here. */

System.out.println("Welcome to the Arithmetic Adventure game.");

}

}

If we leave out either of these word
this program compiles but won’t run.

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 11

Semantic Errors

public classAdventure{

/* Version 0

This program is an arithmetic adventure game where an adventurer
navigates rooms that contain treasure chests that are opened by
correctly answering arithmetic problems.

*/

public static voidmain(String args[]) {

/* Program statements go here. */

System.out.println("Welcome to the Arithmetic Adventure game.");

}

}

If we leave out any words between quotation
marks, the program works differently.

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 12

Outline of Lecture 6

• Program errors

• Grammars, syntax and BNF

• Tokens

• Identifiers

• Literals

• Semantics

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 13

Need for LanguageRules

• How do we know what words to use in the
program: “public”, “ class”, “ static”, “ void”?

• What order should we use for the words?

• How do we know if a program is expressed
correctly in a programming language?

We need some rules for writing a program so
that if we follow the rules the program will
be correct.

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 14

Natural Language Rules

• Some language expressions make sense:
– John ate the green apple.

• Some language expressions don’t:
– Walk red Mary eat square.

• There are rules that determine whether a
natural language expression makes sense.

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 15

Grammars and Syntax
• The set of rules that define the syntaxof

legal constructs in a natural language is
called a grammar.

• Here is a grammar rule for one simple
English sentence structure:

• Here is sentence that conforms to this
grammar rule: John ate the green apple.

<sentence> ::= <subject> <verb> <article> <adjective> <object>.

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 16

Notation

• ::= means “is defined as”.

Sentence is defined as a subject followed by a
verb followed by an article followed by an
adjective followed by an object and
terminated by a period.

• <sentence>, <subject>, <verb>, <article>,…
are not real words but represent real words
(tokens).

<sentence> ::= <subject> <verb> <article> <adjective> <object>.

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 17

Backus-Naur Form (BNF)
• The notation:

<sentence> ::= <subject> <verb> <article> <adjective> <object>.

is called Backus-Naur Form (BNF).

• Words in < > are called non-terminals since they
must be further defined.

• The symbols < > ::= are called meta-characters
since they are part of the BNF language, not part
of the target language.

• All other symbols (like the dot) are called
terminals and must appear as shown.

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 18

Syntax Errors

• If there are syntax errors in a natural
language sentence, it may still be
understandable: John ate the apple green.

• In general, computer programs are much
more sensitive to minor changes than
natural languages.

• If there are syntax errors in a program, the
compiler reports the errors and does not
translate the program to machine language.

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 19

Common Syntactic Concepts
• Different natural languages share common

concepts like: words, punctuation, phrases
and sentences.

• Programming languages also share some
common concepts.

• Three common concepts that are used to
build larger syntactic structures are:
– tokens

– identifiers

– literals
Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 20

Outline of Lecture 6

• Program errors

• Grammars, syntax and BNF

• Tokens

• Identifiers

• Literals

• Semantics

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 21

Tokens and Lexics
• Alphabetic symbols in many natural

languages are combined into words.

• Alphabetic symbols in programming
languages are combined into tokens.

• The rules for combining alphabetic symbols
into tokens is often called lexics.

• The lexical rules are usually expressed
independently from the grammar rules that
describe how tokens can be combined into
larger syntactic structures.

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 22

Token Classes

• In natural languages, there are different
classes of words: nouns, verbs, etc. and the
class of a word defines the syntactic use.

• In programming languages different token
groups represent different kinds of basic
constructs.

• A different set of lexical rules is used to
identify each token group.

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 23

Scanning and Parsing

• The compiler uses a scanner(lexer) to read
the characters in your source program one at
a time and combine them into tokens.

• The compiler users a parser to recognize
how these tokens are combined into more
complex syntactic structures.

• Both compiler components use grammar
rules to perform their tasks.

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 24

Outline of Lecture 6

• Program errors

• Grammars, syntax and BNF

• Tokens

• Identifiers

• Literals

• Semantics

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 25

Identifier Tokens

• An identifier is one of the most basic token
classes in a programming language.

• The rules for identifiers vary between
languages, but in Java, an identifier:
– starts with a letter, underscore or dollar sign.

– the initial character is followed by zero or more
letters, digits, underscores or dollar signs.

• Valid: taxRate R2D2 margin_size

• Invalid: 98August jersey#
Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 26

BNF Rules for Java Identifiers

<identifier> ::= <initial> | <initial> <more>

<initial> ::= <letter> | _ | $

<more> ::= <final> | <more > <final>

<final> ::= <initial> | <digit>

<letter> ::= a | b | c | … z | A | B| … | Z

<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

• Note that the bar is a meta-character that
means “or”.

• Each line is called a grammar production.

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 27

Java BNF Identifier Example 1

• For example, R2D2 is legal since it is:
R 2 D 2

<letter> 2 D 2 using <letter> ::= R

<initial> 2 D 2 using <initial> ::= <letter>

<initial> <digit> D 2 using <digit> ::= 2

<initial> <final> D 2 using <final> ::= <digit>

<initial> <final> <letter> 2 using <letter> ::= D

<initial> <final> <initial> 2 using <initial> ::= <letter>

<initial> <final> <final> 2 using <final> ::= <initial>

<initial> <final> <final> <digit> using <digit> ::= <2>

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 28

<initial> <final> <final> <digit> using <digit> ::= <2>

<initial> <final> <final> <final> using <final> ::= <digit>

<initial> <more> <final> <final> using <more> ::= <final>

<initial> <more> <final> using <more> ::= <more> <final>

<initial> <more> using <more> ::= <more> <final>

<identifier> using <identifier> ::= <initial> <more>

Java BNF Identifier Example 2

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 29

EBNF Rules for Java Identifiers
• There is an extended BNF notation (EBNF)

in which the meta-characters {} can be used
to denote “zero or more”.

• In EBNF, the productions:
<identifier> ::= <initial> | <initial> <more>

<more> ::= <final> | <more> <final>

are replaced by the simpler production:
<identifier> ::= <initial> { <final> }

• The set of meta-characters [] are used to
enclose optional entries in EBNF.

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 30

Some uses for Identifiers
• All class names are identifiers:

String, Date, PrintStream …

• All message names are identifiers:
toUpperCase, trim, println …

• All variable names are identifiers:

aString, todaysDate, out …

• Literal booleans are identifiers: true, false

• Other literals are not identifiers:

“Fred”, 3, ‘S’ 43.2f

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 31

Java Identifier Conventions

• Class names start with an upper case letter.

• Message names start with a lower case letter.

• If an identifier consists of more than one word
then the first letter of subsequent words is
capitalized:
– PrintStreamÍ class identifier

– toUpperCaseÍmessage identifier

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 32

Outline of Lecture 6

• Program errors

• Grammars, syntax and BNF

• Tokens

• Identifiers

• Literals

• Semantics

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 33

Literal Tokens

• In general, a literal is a token recognized by
the compiler that is immediately translated
into a language value or object.

• Common literals in programming languages
include: characters, numbers and strings.

• The rules for forming literals varies from
programming language to programming
language.

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 34

Java String Literals

• In Java, a String literal is defined by the
lexical rule:
– starts with a “

– zero or more characters

– ends with a “

• How do I add double quotes in a string?

• The \ character is called an escape character
and is used to embed special symbols in a
string.

Hello

She said
“Hello”

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 35

Java String Literal Examples

“Hello.”

“Hello again!”

“She said ”Hello”.”

“She said \”Hello\”.”

“This is a tab character: \t”

“This is a newline character: \n”

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 36

Outline of Lecture 6

• Program errors

• Grammars, syntax and BNF

• Tokens

• Identifiers

• Literals

• Semantics

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 37

Semantics
• Correct syntax is not enough to ensure that the

semantics(meaning) of a program are correct.

• For example, both of these sentences have
correct syntax according to the simple English
grammar:
John read the blue book.
Book read the blue John.

• The first sentence makes sense semantically,
while the second does not.

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 38

Semantic Errors

• Compilers do not find semantic errors.

• For example, we could write a syntactically
correct program that displays the string
“Goodbye”, but it would be semantically
incorrect if we intended to display the string
“Hello”.

• Another simple kind of semantic error is to
put program statements in the wrong order.

*
* *

* *

* *

* *
*

You want this But you get this

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 39

Objectives of Lecture 7

• Learn syntax rules for simple java
statements.

• Translate the computation diagrams into
Java statements and look at the output.

Simple Java ProgramsSimple Java Programs

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 40

Outline of Lecture 7

• Statement syntax

• Variable declaration and reference syntax

• Packages and imports

• Message expression and assignment syntax

• Translation of diagrams to programs

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 41

Java Statement Syntax

• There are many different kinds of statements
in Java, each terminated by a semi-colon.

• Four of the simplest kinds of statements are
variable declarations, imports, message
expressions, and assignments:
<statement> ::= <var dec>; | <import>; |

<message exp>; | <assign>; | …

• We will use all four kinds of statements in
our simple programs.

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 42

Outline of Lecture 7

• Statement syntax

• Variable declaration and reference syntax

• Packages and imports

• Message expression and assignment syntax

• Translation of diagrams to programs

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 43

Variable Declarations

• Every Java variable must be declared.

• The syntax for each kind of variable declaration
is different. (static, local, parameter, and instance variable)

• In this lecture, we will ignore instance variable
declarations and method parameter declarations
since we are not going to use them yet.

• A common approach is to declare each variable
using its own declaration statement.

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 44

Static Variable Declarations
• Static variables:

<stat var dec> ::= <visibility> static [final] <class id> <var id>

<visibility> ::= public | private

• If the keyword final is included, the variable is
actually a constant.

• For example, there is a public variable exported
from class System that is bound to the screen and
declared by:
public static final PrintStream out;

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 45

Local Variable Declarations

• Local variables:
<local var dec> ::= [final] <class id> <var id>

• If the keyword final is included, the variable
is actually a constant.

• For example, we declare local String and
Date variables and a local Date constant:

String myString;

Date aDate;

final Date birthDate;
Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 46

Variable References

• Variables are used by writing variable
references.

• A local variable reference is just the
variable name (an identifier).
<local var ref> ::= <id>

• A static variable reference is:
<static var ref> ::= <export class> . <id>

• For example to refer to the screen object:

System.out

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 47

Outline of Lecture 7

• Statement syntax

• Variable declaration and reference syntax

• Packages and imports

• Message expression and assignment syntax

• Translation of diagrams to programs

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 48

Packages

• Classes that are put in Java libraries can be
grouped together into packages.

• There are many standard Java packages.

• For example, the classes Dateand Stackare
defined in the package named java.util .

• For example, the class Graphicsis defined
in the package named java.awt.

• Awt stands for Abstract Windowing
Toolkit .

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 49

Import Statements
• An import statement must be used to access the

classes in a package.

• You can import one class from a package:
import java.util.Date;

• You can import all classes from a package:
import java.util.*;

• One package: java.lang is implicitly imported
into all Java programs.

• Stringand Systemare two classes in the
java.lang package.

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 50

Static Variable Shortcut

• If a static variable is used inside its
exporting class, you can omit the exporting
class.

• For example, inside the System class, the
screen object can be referenced by:

out

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 51

Outline of Lecture 7

• Statement syntax

• Variable declaration and reference syntax

• Packages and imports

• Message expression and assignment syntax

• Translation of diagrams to programs

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 52

Message Expression Syntax

• The syntax of a message expression is:
<message exp> ::= <obj ref> . <message name> <args>

• A Java argument list is zero or more object
references, separated by commas:
<args> ::= () | ({<object ref>, } <object ref>)

• Since String literals are object references, two
example message expressions are:
“Hello”.toUpperCase(); Î “HELLO”

“Fred”.concat(“ Flintstone”); Î“Fred Flintstone”

“Flintstone”.substring(5, 9); Î“stone”

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 53

Message Expression Syntax

• Since variable references are also object
references, another example of a message
expression is:
System.out.println(“Hello”);

• A message expression that returns an object is
also an object reference so here is another valid
message expression:
System.out.println(“Fred”.concat(“ Flintstone”));

static variable object reference

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 54

Assignment Statements

• An assignment is used to bind a variable to
an object :
<assign> ::= <var ref> = <obj ref>

• For example:
String friend;

String fullName;

friend = "Fred";

fullName = friend.concat(" Flintstone");

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 55

Outline of Lecture 7

• Statement syntax

• Variable declaration and reference syntax

• Packages and imports

• Message expression and assignment syntax

• Translation of diagrams to programs

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 56

Computation Diagrams Î Java

• Finally, we can translate all of our
computation diagrams to Java programs.

• We will change the order that we translate the
diagrams and sometimes we will combine
several diagrams into a single program.

• We are still ignoring the program template
itself and just concentrating on the statements
it contains.

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 57

System

Public Static Variables -out

class

out is actually a constant.

screen

out

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 58

|

FredBarney
|

PrintStream - Example

print

“Fred” Fred|

1 1

println

“Barney”
2 2

print

“Wilma”
3

FredBarney
Wilma|

The PrintStream class is important because
the screen is an instance of PrintStream.

3

System.out

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 59

public classSnippet {

/*

Experimenting with Java

*/

public static voidmain(String args[]) {

/* Program statements go here. */

System.out.print(“Fred”);

System.out.println(“Barney”);

System.out.print(“Wilma”);

}

}

Java - print & println
FredBarney
Wilma|

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 60

String Example - toUpperCase

“Hello”toUpperCase “HELLO”

message
receiver object result object

A message that returns a result object

arrow from receiver to return object

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 61

String Example - trim

“ hello ”trim “hello”

Different instances of the same class can respond
differently because they have different state.

“ Fred ”trim “Fred”

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 62

public classSnippet {

/*

Experimenting with Java

*/

public static voidmain(String args[]) {

/* Program statements go here. */

System.out.println(“Hello”.toUpperCase());

System.out.print(“ Hello “.trim());

System.out.println(“ Fred “.trim());

}

}

Java - toUpperCase & trim

HELLO
HelloFred
|

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 63

Object Creation - Date

Aug. 14
1976

Date
2

2 “8/14/1976”new

1Jan. 24
2000

Date
2

2

today’s date

new

1
Two different constructors.

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 64

Variable Object References -
Example

More than one variable
bound to an object.

variable object reference

“Fred”

neighbour

employee

“Mr. Slate”

boss

now later

“Barney”

boss

Rebinding variables

Jan. 26
2000

today
Oct. 14
2000

today

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 65

main()

Local Variables - Example

method

Jan. 26
2000

today

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 66

import java.util.*;

public classSnippet {

/*

Experimenting with Java

*/

public static voidmain(String args[]) {

/* Program statements go here. */

String employee;

String neighbour;

String boss;

Date today;

Java - Creation & Variables 1
required to use the Date class

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 67

employee = "Fred";

neighbour = "Fred";

boss = "Mr. Slate";

today = new Date();

System.out.println(employee);

System.out.println(neighbour);

System.out.println(boss);

System.out.println(today);

Java - Creation & Variables 2

Fred
Fred
Mr. Slate
Mon Jan 24 12:06:47 MDT 2000

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 68

Java - Creation & Variables 3

boss = "Barney";

today = new Date("10/14/1999");

System.out.println(boss);

System.out.println(today);

}

} Barney
Thu Oct 14 00:00:00 MDT 1999

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 69

Constant Object References -
Example

“Barney”

Constants cannot be re-bound
constant object reference

“Fred”

friend

now later

friend

Oct 14
1979

birthDate
Dec 15
2010

birthDate

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 70

import java.util.*;

public classSnippet {

/* Experimenting with Java */

public static voidmain(String args[]) {

/* Program statements go here. */

final String friend;

final Date birthDate;

friend = "Fred";

birthDate = new Date();

friend = "Barney";

birthDate = new Date("12/15/2010");

}

}

Java - Constants

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 71

Java - Constants - Errors

Error : Can't assign a second value to a blank final variable: friend
Snippet.java line 10 friend = "Barney";

Error : Can't assign a second value to a blank final variable: birthDate
Snippet.java line 11 birthDate = new Date("12/15/2010");

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 72

Stack Example - push

push2

“Fred”

2

“Wilma”

push

“Barney”

1

“Barney”
“Wilma”

1

push requires an argument
and does not return a result.

“Fred”
“Barney”
“Wilma”

argument

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 73

import java.util.*;

public classSnippet {

/* Experimenting with Java */

public static voidmain(String args[]) {

/* Program statements go here. */
Stack aStack;
aStack = new Stack();
System.out.println(aStack);
aStack.push("Wilma");
System.out.println(aStack);
aStack.push("Barney");
System.out.println(aStack);
aStack.push("Fred");
System.out.println(aStack);

Java - push

[]
[Wilma]
[Wilma, Barney]
[Wilma, Barney, Fred]

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 74

Stack Example - peek

peek has no side effect since the state
of the receiver object does not change

“Fred”
“Barney”
“Wilma”

peek “Fred”

peek

1

2 “Fred”

1

2

message sequence number

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 75

Java - peek

[Wilma, Barney, Fred]
Fred
Fred
[Wilma, Barney, Fred]

System.out.println(aStack);

System.out.println(aStack.peek());

System.out.println(aStack.peek());

System.out.println(aStack);

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 76

Stack Example - pop

pop2

“Barney”

2

“Fred”
“Barney”
“Wilma”

pop “Fred”

1 1

“Barney”
“Wilma”

1

pop has a side effect since the state
of the receiver object does change

“Wilma”

2

new state

state transition

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 77

Java - pop

[Wilma, Barney, Fred]
Fred
[Wilma, Barney]
Barney
[Wilma]

System.out.println(aStack);

System.out.println(aStack.pop());

System.out.println(aStack);

System.out.println(aStack.pop());

System.out.println(aStack);

}

}

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 78

Objectives of Lecture 8

• Learn about using new classes.

• Understand the process behind the input of
data.

• Write the first version of our Adventure
program.

Keyboard Input and the Adventure ProgramKeyboard Input and the Adventure Program

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 79

Outline of Lecture 8

• Demonstration of the final Adventure
Program (Version 8)

• Algorithms

• The Keyboard Class

• Program Adventure (Version 1)

• Adding a local library to a project

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 80

Demonstration of Adventure 8

• Start Adventure Version 8.

• Play the game.

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 81

Adventure V1 Output

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 82

Outline of Lecture 8

• Demonstration of the final Adventure
Program (Version 8)

• Algorithms

• The Keyboard Class

• Program Adventure (Version 1)

• Adding a local library to a project

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 83

Algorithms
• If our problem is more complex than sending a few

messages, we must decompose the problem into
small steps.

• An algorithm is a finite collection of steps,
performed in a prescribed order that terminates and
yields a correct solution to a problem.

• For now, we will look at algorithms that consist of
a simple series of consecutive steps.

• Later in the course, we will study algorithms that
perform steps conditionally and repeat steps.

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 84

An Algorithm for Adventure 1
• For example, in Version 1 of the Adventure

program, the steps are:
– greet the user and prompt the user for a name

– input the user name and bind a local variable to it

– describe the game environment using the name

– pause

– prompt the user for a number of tokens

– input a number of tokens and bind a local variable to it

– say farewell to the user by name and indicate the
number of tokens acquired during the game

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 85

New Computations
• We can implement the algorithm by putting

a sequence of message expression
statements and assignment statements into
our program template.

• There are four new computations we need
to perform:
– input a String from the keyboard

– input an Integer from the keyboard

– pause until the user presses the ENTER key

– output an Integer to the screen
Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 86

Outline of Lecture 8

• Demonstration of the final Adventure
Program (Version 8)

• Algorithms

• The Keyboard Class

• Program Adventure (Version 1)

• Adding a local library to a project

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 87

The in Variable

• The System class has a public reference to the
screen object: System.out

• Unfortunately, there is no public reference to a
keyboard object in the standard Java class libraries.

• We have created a library class called Keyboard
that contains a public variable called in.

• Note that the declared class of the in variable is
Keyboard and that the exporting class is also
Keyboard.

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 88

The Keyboard Class
• The Keyboard class is part of a local library

called UofAC114.

• It declares the public variable in with declared
class Keyboard, and includes messages:
– pause
– readString
– readInteger
– readFloat

• To use the Keyboard class, you need to know its
protocol.

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 89

Keyboard Protocol
public classKeyboard{
/*

An instance of this class represents a keyboard device that can be used
to obtain input from the user.

*/

/* Public Variables */
public final static Keyboard in;

/* Instance Methods */
public voidpause();
/*

Display a message and wait until the enter key is pressed.
*/

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 90

Keyboard Protocol (cont 2)
publicString readString();
/*

Answer a String that contains all of the characters
typed by the user until the enter key is pressed.

*/

public Integer readInteger();
/*

Answer an Integer that is represented by the String
that contains all of the characters typed by the
user until the enter key is pressed. If the text
does not form a valid Integer, then answer null.

*/
}

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 91

Keyboard Protocol (cont 3)

publicFloat readFloat() {

/*

Answer a Float that is represented by the String

that contains all of the characters typed by the

user until the enter key is pressed. If the text

does not form a valid Integer, then answer null.

*/
}

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 92

Outputting an Integer

• The declared class of the public variable out
is PrintStream.

• The protocol for PrintStreamhas many
messages including print(String)and
print(Object).

• We can use print(Object)to print an
Integer.

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 93

Outline of Lecture 8

• Demonstration of the final Adventure
Program (Version 8)

• Algorithms

• The Keyboard Class

• Program Adventure (Version 1)

• Adding a local library to a project

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 94

Program - Adventure 1.1
import java.util.*;

public classAdventure{

/* Version 1

This program is an arithmetic adventure game where an adventurer
navigates rooms that contain treasure chests that are opened by
correctly answering arithmetic problems.

*/

public static voidmain(String args[]) {

/* Program statements go here. */
String name;
Integer tokens;

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 95

Program - Adventure 1.2

System.out.println("Welcome to the Arithmetic Adventure game.");

System.out.print("The date is ");

System.out.println(new Date());
System.out.println();
System.out.print("What is your name?");
name = Keyboard.in.readString();
System.out.print("Well ");
System.out.print(name);
System.out.println(", after a day of hiking you spot a silver cube.");
System.out.println("The cube appears to be about 5 meters on each side.");
System.out.println("You find a green door, open it and enter.");
System.out.println("The door closes behind you with a soft whir and disappears.");
System.out.println("There is a feel of mathematical magic in the air.");

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 96

Program - Adventure 1.3

Keyboard.in.pause();
System.out.print("How many tokens would you like?");
tokens = Keyboard.in.readInteger();
System.out.print("Congratulations ");
System.out.print(name);
System.out.print(", you have left the game with ");
System.out.print(tokens);
System.out.println(" tokens.");
}

}

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 97

Outline of Lecture 8

• Demonstration of the final Adventure
Program (Version 8)

• Algorithms

• The Keyboard Class

• Program Adventure (Version 1)

• Adding a local library to a project

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 98

Demonstration Adventure 1

• Open Adventure 1 in CodeWarrior

• Show how to add C114UofA.jar into the
classes folder.

• Run.

