
Objects and Values

Cmput 114 - Lecture 4

Department of Computing Science

University of Alberta

©Duane Szafron 1999

©Duane Szafron 1999

2

About This Lecture

z In this lecture, we will learn about values 
and how they differ from objects.

z We also learn how to do simple 
computations with values.

©Duane Szafron 1999

3

Outline

z Objects versus values
z Pure and hybrid languages
z Java values and primitive types
z Some Java operators

©Duane Szafron 1999

4

Objects versus Values

z Some real world entities are so simple that 
we represent them by values instead of by 
objects.

z A value has no protocol, so it cannot 
respond to messages.

z However, values can be used as 
arguments in messages.

z Values can also be returned as the results 
of messages.



©Duane Szafron 1999

5

Pure Paradigm Languages

z How simple is simple enough to represent 
as a value?

z The answer depends on the programming 
language used.

z In “pure” procedural programming 
languages like C and Pascal, there are no 
objects, only values.

z In “pure” object-oriented languages like 
Smalltalk, there are no values, just 
objects.

©Duane Szafron 1999

6

Hybrid Programming Languages

z Languages with both objects and values 
are object-procedural hybrid languages.

z Hybrid languages differ on what is an 
object and what is a value.

z In Java, numbers can be represented by 
values or objects while in C++ they are 
values.

z In Java, strings are objects while in C++ 
they are values.

z In both languages, Streams are objects.

©Duane Szafron 1999

7

Simple Program in Java and C++

z If our simple program is expressed in 
Java, then the “Hello” message argument 
is an object.

z If our simple program is expressed in C++, 
then the “Hello” message argument is a 
value.

screenprint

“Hello”

“Hello”

Java

C++

This is a PrintStream object 
in both Java and C++

©Duane Szafron 1999

8

Java Values - Primitive Types

z We group similar kinds of Java values 
together so that every value has a 
primitive type.

z For example, the numbers 3, 4 and 5 have 
primitive type int.

z Since a value is not an object, it does not 
have a class.

z To avoid saying "the class of an object or 
the primitive type of a value", we use the 
word type to mean class or primitive type.



©Duane Szafron 1999

9

Java Values

z Here are some of the primitive types for 
Java values:
int 43 -12 9999999
char ‘H’ ‘\’’ ‘\n’ (newline) ‘\t’ (tab)
float 43.0f -12.5f 9.5E-5f
boolean true false

©Duane Szafron 1999

10

Computing with Values

z Since we cannot send messages to 
values, how can we do any computing 
with values?

z There are three ways to use values:
– use them as arguments to messages
– return them as the results of a message
– use operators on them

©Duane Szafron 1999

11

|

5060
|

Using Values as Arguments

print

50|
1 1

println
2 2

print
3

5060
70|

3

50

60

70

©Duane Szafron 1999

12

Using Values as Results

length 5“Hello”



©Duane Szafron 1999

13

Java Operators

z Values can be manipulated using 
operators.

z Operators are not messages!
z For example, there are some arithmetic 

operators that take numerical operands 
and compute numerical results.

7
+

2

9

7
*

2

14

7
/

2

3

7
%

2

1

Object Creation, Object 
References and Variables

Cmput 114 - Lecture 5

Department of Computing Science

University of Alberta

©Duane Szafron 1999

©Duane Szafron 1999

15

About This Lecture

z In this lecture we will learn how to create 
objects in our language independent 
diagram world.

z We will learn about various kinds of object 
references that can be used to identify the 
objects that we want to use.

z We will also study different kinds of 
variables including static variables and 
local variables.

©Duane Szafron 1999

16

Outline

z Object creation and Date example
z References

– Literals
– Values
– Variables
– Constants

z Static variables
z Local variables
z Message Parameters



©Duane Szafron 1999

17

Object Creation is Needed

z When we express a computation using a 
diagram, we never have to create any 
objects, we just draw them and then send 
messages to them.

z In a written program, we must provide 
some instructions to create objects before 
we can send any messages to them. 

©Duane Szafron 1999

18

Object Creation

z Every object must be created before it can 
be used.

z An object creation primitive creates a new 
“empty” object.

z A custom message called a constructor is 
sent to the object to initialize its state.

z A class may have more than one 
constructor.

z In many languages, the name of the 
constructor is the name of the class.

©Duane Szafron 1999

19

Partial Constructor Protocol - Date

z Set the new Date to today.

z Set the new Date to the 
Date represented by the 
argument String.

Date

Date

z All constructors have the same name, but 
differ in the types of the argument objects.

String

©Duane Szafron 1999

20

Object Creation - Date

Aug. 14
1976

Date
2

2 “8/14/1976”new

1January 19
2000

Date
2

2

today’s date

new

1
Two different constructors.



©Duane Szafron 1999

21

Object References are Needed

z In a diagram, we can send a message to 
any object that we have drawn simply by 
pointing a message arrow at it.

z In a written program, we need to have 
some notation for referring to objects so 
we can send messages to them.

z If we create an object and don’t have a 
reference to it, we can never use it.

©Duane Szafron 1999

22

Object References - Literal

z An object reference is a language 
expression that refers to an object.

z The simplest kind of object reference is a 
literal object reference.

z A literal object reference refers to the 
same object at all times.

z You can think of a literal object reference 
as a nameplate attached to an object.

©Duane Szafron 1999

23

Literal Object References - String

“Barney”

object

Literals cannot be re-boundliteral object reference

“Fred”

“Fred” “Fred”

now later

©Duane Szafron 1999

24

Value References

z In a hybrid language, a value reference is 
a language expression that refers to a 
value.

z The simplest kind of value reference is a 
literal value reference that refers to the 
same value at all times.

z You can think of a literal value reference 
as a nameplate attached to a value.

z A literal is either a literal object reference 
or a literal value reference.



©Duane Szafron 1999

25

Literal Value References - ints

value

Literals cannot be re-boundliteral value reference

now
later

50

50

40
50

©Duane Szafron 1999

26

Variables

z A variable object reference is an object 
reference that may refer to different 
objects at different times.

z A variable value reference is a value 
reference that may refer to different values 
at different times.

z A variable is either a variable object 
reference or a variable value reference.

z A variable is said to be bound to its object 
or value.

©Duane Szafron 1999

27

Re-binding Variables

z A variable can be re-bound to a different 
object or value.

z You can think of a variable as a nameplate 
that can be moved. 

z However, in some languages, a variable is 
restricted to objects or values of a 
particular type called its declared type. 

z More than one variable can be bound to 
the same object or value at the same time.

©Duane Szafron 1999

28

Variables - Example

More than one variable bound 
to the same object.

variable object reference

“Fred”

neighbor

employee

“Mr. Slate”

boss

now later

“Barney”

boss

Rebinding a variable

Jan. 19
2000

today

Apr. 19
2000

today26
taxRate

variable value reference



©Duane Szafron 1999

29

Constants

z A constant is like a variable, but once 
bound to an object or value it cannot be 
rebound.

z It is different than a literal since:
– it is not restricted to those types that have 

literals
– its language notation is like a variable

©Duane Szafron 1999

30

Constants - Example

“Barney”

Constants cannot be re-bound
constant object reference

“Fred”

friend

now later

friend
Oct 14
1979

birthDate

Dec 15
2010

birthDate

26
taxRate

constant value reference

29
taxRate

©Duane Szafron 1999

31

Kinds of Variables

z There are four kinds of variables:
– static (class) variables
– local (temporary or method) variables
– message parameters
– instance (object) variables

z Every variable has two characteristics.
z The scope or visibility is the region of 

program code that can use the variable.
z The lifetime is the time that the variable 

exists (can be used).
©Duane Szafron 1999

32

Static Variables

z A static variable or class variable is 
declared in a class.

z Its lifetime is the entire time that the 
program is run.

z Its scope is either:
– public (the entire program)
– private (the class where it is declared)

z Static constants are also allowed.



©Duane Szafron 1999

33

Public Static Variables

z There may be three different types 
involved with a public static variable.

z Recall that the declared type of a variable 
is the type of object or value to which it 
can be bound.

z The exporting class is the class in which it 
is declared.

z The using class is the class in which it is 
used to reference an object or value.

©Duane Szafron 1999

34

System

Public Static Variables -out

class

The exporting class of out is System.
The declared type of out is PrintStream.
It is actually a constant.

screen

out

©Duane Szafron 1999

35

Local Variables

z A local variable or temporary variable or
method variable is declared in a block of 
code called a method. 

z Its lifetime is the time that the method is 
running.

z Its scope is the method it is declared in.
z Local constants are also allowed.

©Duane Szafron 1999

36

main()

Local Variables - Example

method

Jan. 19
2000

today



©Duane Szafron 1999

37

Message Parameters

z A message parameter is declared at the 
start of a block of code called a method.

z A message parameter is bound to an 
argument object or value when the 
method is called and cannot be re-bound. 

z Its lifetime is the time that the method is 
running.

z Its scope is the method it is declared in.

©Duane Szafron 1999

38

concat(String aString)

Message Parameters - Example

“ Flintstone”

aString

©Duane Szafron 1999

39

Instance Variables

z We will discuss instance variables in a 
future lecture.

©Duane Szafron 1999

40

General Object References

z Recall that an object reference is any 
language expression that refers to an 
object and a value reference is any 
language expression that refers to a value.

z There are many other kinds of references 
in addition to literals, variables and 
constants.

z For example, since a message expression 
returns an object or value, the message 
expression itself is also a reference.



©Duane Szafron 1999

41

Message Expression Object Reference

1

This message expression is an 
object reference, so another 
message can be sent to the result

“   Hello   ”toUpperCase
1

“   HELLO   ” trim

“HELLO”

2

2


