About This Lecture

|
e In this lecture, we will learn about values

Objects and Values and how they differ from objects.

e We also learn how to do simple

cornputations with values.

Cmput 114 - Lecture 4
Department of Computing Science

University of Alberta

©Duane Szafron 1999

[©Duane Szafron 1999

Outline Objects versus Values
]]
e Objects versus values e Some real world entities are so simple that
e Pure and hybrid languages we|represent them by values instead of by

objects.

e A value has no protocol, so it cannot
respond to messages.

e However, values can be used as
arguments in messages.

e Java values and primitive types
e Some Java operators

e Values can also be returned as the results
of messages.

[©Duane Szafron 1999 [©Duane Szafron 1999
| ; |
Pure Paradigm Languages Hybrid Programming Languages
]]

e How simple is simple enough to represent e Languages with both objects and values
as a value? are| object-procedural hybrid languages.

e The answer depends on the programming e Hybrid languages differ on what is an
language used. object and what is a value.

e In “pure” procedural programming e In Java, numbers can be represented by
languages like C and Pascal, there are no values or objects while in C++ they are
objects, only values. values.

e In “pure” object-oriented languages like e In Java, strings are objects while in C++
Smalltalk, there are no values, just they are values.
objects. e In both languages, Streams are objects.

[©Duane Szafron 1999 [©Duane Szafron 1999]

Simple Program in Java and C++

e If our simple program is expressed in
Java, then the “Hello” message argument
is gn object.

e If our simple program is expressed in C++,
then the “Hello” message argument is a

vale.

This is a PrintStream objec
in both Java and C++

[©Duane Szafron 1999]

Java Values - Primitive Types

e We group similar kinds of Java values
together so that every value has a
primitive type.

e For example, the numbers 3, 4 and 5 have
primitive type int.

e Since a value is not an object, it does not
haye a class.

e To javoid saying "the class of an object or
the| primitive type of a value", we use the

word type to mean class or primitive type.
[©Duane Szafron 1999]

‘ 9

Java Values

e Here are some of the primitive types for
Java values:

int 43 -12 9999999

char ‘H \” \n’ (newline) ‘\t’ (tab)

float 43.0f -12.5f 9.5E-5f

boolean true false

[©Duane Szafron 1999

10,

Computing with Values

e Since we cannot send messages to
values, how can we do any computing
with values?

e There are three ways to use values:
— yse them as arguments to messages
— return them as the results of a message
— yse operators on them

[©Duane Szafron 1999

‘ 11

Using Values as Arguments

rint
50

12

Using Values as Results

[©Duane Szafron 1999

length

(o) [5]

[©Duane Szafron 1999

13,

Java Operators

]

e Values can be manipulated using
operators.

e Operators are not messages!

e For example, there are some arithmetic
operators that take numerical operands
and compute numerical results.

1).(2) <> @
NS\ N

[©Duane Szafron 1999]

9

Ohiact Craatinn._ Obiaect
UIJJ\.’\.:L \SJ pe3 o8)\v)| I, A\ 4Vl
References and Variables

Cmput 114 - Lecture 5
Department of Computing Science

University of Alberta

©Duane Szafron 1999

15

About This Lecture

]

e In this lecture we will learn how to create
objects in our language independent
diagram world.

e We will learn about various kinds of object
references that can be used to identify the
objects that we want to use.

e We will also study different kinds of
varjables including static variables and
locgl variables.

[©Duane Szafron 1999

16,

Outli

ne

e Ob
e Re
— 1

— Constants
e Static variables

e LoC

o Message Parameters

ect creation and Date example

erences
iterals
alues
ariables

al variables

[©Duane

zafron 1999]

17

Object Creation is Needed

]

e When we express a computation using a
diagram, we never have to create any
objects, we just draw them and then send
messages to them.

e In & written program, we must provide
some instructions to create objects before
we|can send any messages to them.

[©Duane Szafron 1999

18,

Object Creation

e Every object must be created before it can
be used.

e An

“

se

e AcC
co

e In many languages, the name of the

co

empty” object.
e A custom message called a constructor is

object creation primitive creates a new

t to the object to initialize its state.

lass may have more than one
structor.

structor is the name of the class.

[©Duane

zafron 1999]

19,

Partial Constructor Protocol - Date

e All constructors have the same name, but
differ in the types of the argument objects.

:\’> e Set the new Date to today.
Date

Date e Set the new Date to the
String Date represented by the
argument String.

[©Duane Szafron 1999]

‘ 21

Object References are Needed

e In a diagram, we can send a message to
any object that we have drawn simply by
pointing a message arrow at it.

e In & written program, we need to have
some notation for referring to objects so
we|can send messages to them.

e If we create an object and don't have a
reference to it, we can never use it.

[©Duane Szafron 1999

‘ 23

Literal Object References - String
[

literal object referencé \ Literals cannot be re-bourfd

1“Fred”

[©Duane Szafron 1999

20

Object Creation - Date

[Two different constructorg.

[©Duane Szafron 1999

22

Object References - Literal

e An|object reference is a language
expression that refers to an object.

e The simplest kind of object reference is a
literal object reference.

e A literal object reference refers to the
same object at all times.

e You can think of a literal object reference
as a nameplate attached to an object.

[©Duane Szafron 1999

24

Value References

e In a hybrid language, a value reference is
a language expression that refers to a
value.

e The simplest kind of value reference is a
literal value reference that refers to the
same value at all times.

e You can think of a literal value reference
as a nameplate attached to a value.

e A I$eral is either a literal object reference

or a literal value reference.
[©Duane Szafron 1999]

25

Literal Value References - ints
[

literal value reference

\ Literals cannot be re-boudd

[©Duane Szafron 1999

26

Var

iables

e A
re

e A
re
at

e A

e A
or

objects at different times.

reference or a variable value reference.

ariable object reference is an object
ference that may refer to different

ariable value reference is a value
ference that may refer to different values
different times.

ariable is either a variable object

variable is said to be bound to its object
alue.

27

Re-

binding Variables

e A

ariable can be re-bound to a different

object or value.

e You can think of a variable as a nameplate
that can be moved.

e However, in some languages, a variable is
restricted to objects or values of a
particular type called its declared type.

e More than one variable can be bound to
the| same object or value at the same time.

[©Duane

zafron 1999

29

Constants

e A constant is like a variable, but once
bound to an object or value it cannot be
rebound.

e |t is different than a literal since:

— it is not restricted to those types that have

literals

— its language notation is like a variable

[©Duane

zafron 1999

[©Duane Szafron 1999

‘ 28

Variables - Example
| ‘

i
More than one variable bound
to the same object.
T

Rebinding a variable

T
[variable object referente

>

variable value referende

30

Constants - Example

\ Constants cannot be re-bounb

[constant object referente

friend

> Trowl <

[©Duane

zafron 1999]

31

Kinds of Variables

e There are four kinds of variables:
— gtatic (class) variables
— lpcal (temporary or method) variables
— message parameters
— ipstance (object) variables
e Every variable has two characteristics.
e The scope or visibility is the region of
program code that can use the variable.
e The lifetime is the time that the variable

exists (can be used).
[©Duane Szafron 1999]

32

Static Variables

e A static variable or class variable is
declared in a class.
e [ts |ifetime is the entire time that the
program is run.
e Its scope is either:
— public (the entire program)
— private (the class where it is declared)
e Static constants are also allowed.

[©Duane Szafron 1999

33

Public Static Variables

e There may be three different types
involved with a public static variable.

e Recall that the declared type of a variable
is the type of object or value to which it
can be bound.

e The exporting class is the class in which it
is declared.

e The using class is the class in which it is
used to reference an object or value.

[©Duane Szafron 1999

34

Public Static Variablesout

The exporting class of out is System.
The declared type of out is PrintStream.
It is actually a constant.

[©Duane Szafron 1999]

35

Local Variables

e A local variable or temporary variable or
method variable is declared in a block of
code called a method.

e [ts |ifetime is the time that the method is
running.

e Its scope is the method it is declared in.

e Local constants are also allowed.

[©Duane Szafron 1999

36

Local Variables - Example

[©Duane Szafron 1999

37

Message Parameters

]

e A message parameter is declared at the
start of a block of code called a method.

e A message parameter is bound to an
argument object or value when the
method is called and cannot be re-bound.

e [ts |ifetime is the time that the method is
running.

e lts scope is the method it is declared in.

[©Duane Szafron 1999

Instance Variables

]
e We will discuss instance variables in a
future lecture.

[©Duane Szafron 1999

41

object reference, so another
message can be sent to the res

@
This message expression is an
ult

[©Duane Szafron 1999]

Message Expression Object Referepce

(O

38

Message Parameters - Example

concat(String aString)

[©Duane

Szafron 1999

‘ 40

Gen

eral Object References

® Re
lan
obj
lan

in g
con
e For

exp

call that an object reference is any
guage expression that refers to an

ect and a value reference is any

guage expression that refers to a value.

e There are many other kinds of references

ddition to literals, variables and
stants.

example, since a message expression

returns an object or value, the message

ression itself is also a reference.

[©Duane

zafron 1999]

