Structural Prgrammirg
and Data Structures

Winter 2000
CMPUT 102: Inheritance

Dr. Osmar R. Zalane

Structural Programming and Data Structures ~ University of Alberta | ==

Course Content

* Introduction * Vectors

» Objects » Testing/Debugging
* Methods * Arrays

» Tracing Programs | < Searching

* Object State * Files /O

» Sharing resources | ¢ Sorting

e Selection ; Inheritance

* Repetition = Recursion

University of Alberta | =
e

Structural Programming and Data Structures

Objectives of Lecture 24

Inheritance

* Introduce the notion of inheritance in object-
oriented programming;

» Understand the concepts of superclass (base
class) and subclass (derived class);

» Learn how to take advantage of similarities
between objects from different classes to derive
one class from another and inherit instance
variables and methods.

University of Alberta | =
e

Structural Programming and Data Structures

Vg
22

Outline of Lecture 24 i

» Subclasses and Superclasses
Type inheritance

Method inheritance
Representation inheritance
Constructor inheritance

University of Alberta ; =
T

Structural Programming and Data Structures

The Idea Behind Inheritance

» Extending the capabilities (i.e. behaviour
and state) of a class C1 in order to generate
a new class C2 with the same capabilities as
C1 in addition to new capabilities.

instance variable_1

Method_c

Object of class C1 . _ _ 0O
, instance variable_2| S

instance variable_1)
instance variable_2 instance variable_ n| &
Method_a =4
instance variable_n Method_b o)
Method_a)
Method_b instance variable_n+1 %
(@)

N

[Dr. Osmar R. Zaiane, 2000

Structural Programming and Data Structures

University of Alberta ;’é_ 5
e

Inheritance Hierarchy

Name
person Address
Birthdate
Etc.
Y /\
professional &7 [salary student X 2 StudentID
Profession GPA
/\ -
Spemalty

Scores (),u
Team Physiciansy ‘fgx

[Dr. Osmar R. Zaiane, 2000

Structural Programming and Data Structures

University of Alberta ;’é_ 6
e

Inheritance in the Real World

* How is a student like a person?
» Well, every student is a person!

» Students have all of the “properties” of
persons, plus some others.

» For example, every person has a name and
an age and so does every student.

* However, not every person is a student.

» Every student has a student id and a grade
point average, that other persons don't have.

O Dr. Osmar R. Zaiane, 2000

Structural Programming and Data Structures University of Alberta ;’é_ 7
e

Two Different Approaches

* In Java, we model a person by a Person class.
* In Java, we model a student by a Student class.
* Introduce two independent classes, one for Student and

one for Person ﬂ Q

— we lost relationships between the two ‘

— a Student class has to redefine all the properties of a Person clas

» Define a Student class as a specialization of a Person clas

— characterize special relationships

— software reusability

1+

Structural Programming and Data Structures

O Dr. Osmar R. Zaiane, 2000 University of Alberta :’T, 8
2

C

Subclasses and Superclasses

 Since a studentis like a person pA superclass
with extra properties, we say the ”
class Student issubclassof the l
class Person (aterived clasg.

* We also say that Person is a
superclassof Student (obase
clasg.

Structural Programming and Data Structures =

The Java Inheritance Tree

* In general, Person can have other subclasses
as well, say Teacher.

 We put all the classes in arheritance tree
with class Object as the root.

* We draw the tree with the root at the top.

Structural Programming and Data Structures University of Alberta _ *&'- 10

V-4
Outline of Lecture 24 Si&.

Subclasses and Superclasses
Type inheritance

Method inheritance
Representation inheritance
Constructor inheritance

Structural Programming and Data Structures =

Type Inheritance

» We say that a subclassherits all of the
messages from its superclass.

* Any message that can be sent to an instance
of a class can also be sent to an instance of
its subclasses.

» However, you can add additional instance
messages and static messages to a subclass.

Structural Programming and Data Structures University of Alberta | §; 12

Type Inheritance (con't)

* If you declare the type of a variable to be
some class, it can then be bound to an
instance of that class or any subclass.

* If the type of a message parameter or the
return type of a message is a class, you can
use any subclass as well.

* The property of being able to use an instance
of a subclass, wherever you can use an
instance of a class is calledbstitutability .

0 Dr. Osmar R. Zaiane, 2000 Structural Programming and Data Structures University of Alberta ;’é_ 13
e

Type Inheritance Example

» Assume that we are defining a class called Store.

» Assume that we have already defined a class
called Person, with a message called name() and
two subclasses: Student and Teacher.

« Assume that we have defined a message in this

“Store” class called register that takes a Person as

a parameter:

public void register(Person aPerson) {
/I Register the given Person as a customer.

0 Dr. Osmar R. Zaiane, 2000 Structural Programming and Data Structures University of Alberta ;’é_ 14
e

Type Inheritance Example (con’t)
* Here is a method that creates a Person, Student or

Teacher customer, depending on a char parameter.

public Person createCustomer(char aChar, String aString){
Person customer;

if (@Char == T’) customer = new Teacher(hamesString);
else if (aChar =='S’) customer = new Student(namesString);
else customer = new Person(nameString);

System.out.printin(*Welcome “ + customer.name());
this.register(customer);
return customer;

0 Dr. Osmar R. Zaiane, 2000 Structural Programming and Data Structures University of Alberta ;’é_ 15
et

Instance Variable and Static Variable
(Representation) Inheritance

* [n Java, a subclass also inherits all of the
instance variables and all of the static
variables of its superclass.

* However, if a variable is private, it cannot
be accessed directly in the subclass code.

e If a variable is declared gsotected it can
be accessed directly in the subclass code.

» A subclass can also add state by defining
additional instance and static variables.

0 Dr. Osmar R. Zaiane, 2000 Structural Programming and Data Structures University of Alberta ;’é_ 16
2

D

-5
Outline of Lecture 24 Si&.

Subclasses and Superclasses
Type inheritance

Method inheritance
Representation inheritance
Constructor inheritance

Structural Programming and Data Structures

Method (Implementation)
Inheritance

* In Java, a subclass also inherits the methods
of its superclass, so they do not have to be re-
implemented.

* However, you can alsoverride any method
If you want.

 In addition, you can add some code to an
inherited method, using tleeiper object
reference.

Structural Programming and Data Structures ~ University of Alberta | ==

Method Override

instance variable_1

Object of class C1 _ : 0
instance variable_2| =
instance variable_1 ©
instance variable_2 instance variable n Q
o
instance variable_n Method_b c_lh
[Method_a D
e . .)
ethod_| e instance variable_n+1 ¢
[[Meoda | | Q
N
Class C1 Class C2
Method_a Method_a
Method_a
SuperMethod_a(

Structural Programming and Data Structures

V-4
5D

Outline of Lecture 24 %ﬁ@

Subclasses and Superclasses
Type inheritance

Method inheritance
Representation inheritance
Constructor inheritance

Structural Programming and Data Structures ~ University of Alberta | == .

Representation (or Data)

Inheritance
ObjectofclassC1 instance variable_|1 o
- instance variable |2 | =
instance variable 1 Iy
instance variable_2 instance variable \n| 2
Method_a =3
instance variable_n Method_b o
Method_a e)
Method_b e instance variable_n+1 &
Method_c (@)
N

0 Dr. Osmar R. Zaiane, 2000 Structural Programming and Data Structures

public class Person {
/I Each instance represents a Person.

// Public methods
public void output() {
// Output a representation of myself

System.out.print(this.age());

}

Representation/Implementation
Inheritance - Example

System.out.print(“name: “ + this.name + “ age: “);

Il Instance Variables /

protected String name;

name is protected: it is
accessed only by class

Person and its subclasses.

private Date birthdate;

0 Dr. Osmar R. Zaiane, 2000

Structural Programming and Data Structures

University of Alberta

'.;;?:; 22

Representation /Implementation
Inheritance - Example (con’t)

public class Student extends Person {
/I Each instance represents a Student.

// Public methods Calls the output()

public void output() { method of the
// Output a representation of myself superclass Person

super.output(); <«—
System.out.print(* id: “);
System.out.print(this.id);

}

/I Instance Variables
/I cannot access birthdate, but can access name because it is protected
private int id,;

0 Dr. Osmar R. Zaiane, 2000 Structural Programming and Data Structures

Type inheritance

V-4

/4

Subclasses and Superclasses

Method inheritance
Representation inheritance

e Constructor inheritance

0 Dr. Osmar R. Zaiane, 2000

Structural Programming and Data Structures

3
N2

Outline of Lecture 24 S

.

Constructor Chaining

« Constructors are not inherited like other
methods. We say constructors are chained.

* If you want to call another constructor in
the same subclass, you just ug@s{()” with
the appropriate arguments.

* If you want to call another constructor in
the superclass, you just usaiper()’ with
the appropriate arguments.

O Dr. Osmar R. Zaiane, 2000

Structural Programming and Data Structures

Constructor Chaining (con't)

* However, each constructor must “ultimately” call
one of the constructors in its superclass.

» This can be done in one of three ways:

— An explicit call to super() with arguments.

— A call to another constructor in the subclass using this()
with arguments.

— If neither of these appear as the first statement of the
subclass constructor, the compiler inserts an implicit
call to the zero argument super constructor super().
However, the a constructor with no arguments should
exist in the superclass.

0 Dr. Osmar R. Zaiane, 2000

Structural Programming and Data Structures

Constructors - Example

public class Person {
I/l Each instance represents a Person.
/I Constructors
public Person() {
/I Set the name “unknown” and birtdate: today
this.name = “unknown”;
this.birthdate = new Date();

}

public Person(String nameString) {

/I Set the given name and birthdate: today
this();// do the 0 argument constructor first
this.name = nameSitring;

O Dr. Osmar R. Zaiane, 2000

Structural Programming and Data Structures

Constructors - Example (con’t)

public class Student extends Person {
/I Each instance represents a Student.
public Student() {
/I Set the name: “unknown”, birtdate: today, id: O
this.id = 0;// implicit call to super(); first

public Student(String nameString) {

/I Set the given name, birthdate: today, id: O
super(nameString)/ explicit call
this.id = 0;

public Student(String nameString, int anint) {

/I Set the given name and id, birthdate: today
this(hamesString)l/ or super(nameString)
this.id = anint;

University of Alberta | £= 1 28
e

0 Dr. Osmar R. Zaiane, 2000

Structural Programming and Data Structures

Multiple Inheritance

« Multiple inheritance is the inheritance of
properties from more than just one base class.

« Java does not allow multiple inheritance.

» Other Object-Oriented languages such as C
allow multiple inheritance;

parent parentl parent2

Simple \ / Multiple

inheritance inheritance

child child

0 Dr. Osmar R. Zaiane, 2000 Structural Programming and Data Structures University of Alberta ;’é_ 29
e

