Structural Programming
and Data Structures

Winter 2000

CMPUT 102: Inheritance

Dr. Osmar R. Zaiane

University of Alberta

£10r. Osmar R. Zaiane, 2000 Structural Programming and Data Structures University of Aberta g
]

I»—-

Course Content

« Introduction
« Objects
¢ Methods

« Object State

¢ Selection
* Repetition

¢ Tracing Programs

¢ Sharing resources

Vectors
¢ Testing/Debugging
* Arrays
¢ Searching
* Files /O
Sorting
Inheritance
Recursion

£10r. Osmar R. Zaiane, 2000 Structural Programming and Data Structures Universiy of Aberta g 2
S

Objectives of Lecture 24

Inheritance

« Introduce the notion of inheritance in object-
oriented programming;

¢ Understand the concepts of superclass (basq
class) and subclass (derived class);

¢ Learn how to take advantage of similarities
between objects from different classes to derjve
one class from another and inherit instance
variables and methods.

£10r. Osmar R. Zaiane, 2000

Structural Programming and Data Structures. University of Aberta g
i

Iw

e Subclasses and Superclasses
¢ Type inheritance

Method inheritance

* Representation inheritance
Constructor inheritance

£10r. Osmar R. Zaiane, 2000

Structural Programming and Data Structures. University of Aberta g
i

IJ;

The Idea Behind Inheritance

¢ Extending the capabilities (i.e. behaviour
and state) of a class C1 in order to generate
a new class C2 with the same capabilities ag
C1 in addition to new capabilities.

Inheritance Hierarchy

Name

person Address
Birthdate
Etc.

oz

professio

StudentiD

Objectof classC1 - - ~ ’

instance variable_1

instance variable_2 8-
instance variable_1 Ko}
instance variable_2 instance variable_n | &
Method_a =}
instance variable_n Method_b o
Method_a o
Method_b instance variable_n+1 %

¢
N

Method_c

£1Dr. Osmar R. Zaiane, 2000

Structural Programming and Data Structures.

University of Alberta

.

Im

soccer. &

nal &7 [sapary
A9 | Professiol

A Scores
pIayer?: M Physmlan\“iég M

GPA
Degree

£10r. Osmar R. Zaiane, 2000

Structural Programming and Data Structures. ¥

niversity of Aberta g
Y o 6

Inheritance in the Real World

How is a student like a person?
Well, every student is a person!

Students have all of the “properties” of
persons, plus some others.

For example, every person has a name and
an age and so does every student.

However, not every person is a student.

Every student has a student id and a grade
point average, that other persons don't have.

£0r. Osmar R. Zaiane, 2000

Structural Programming and Data Structures Universiy of Aberta g - 7
L3

Two Different Approaches

In Java, we model a person by a Person class.
In Java, we model a student by a Student class.
Introduce two independent classes, one for Student and
one for Person

— we lost relationships between the two
— a Student class has to redefine all the properties of a Persof class

Define a Student class as a specialization of a Person| class

— characterize special relationships
— software reusability

£0r. Osmar R. Zaiane, 2000

Structural Programming and Data Structures Universiy of Aberta g - 8
L3

Subclasses and Superclasses
« Since a student is like a person * Superclass
with extra properties, we say the
class Student is subclassof the 1
class Person (aterived clas).
« We also say that Person is a 4‘
superclassof Student (obase
clasy.

Subclass|

£0r. Osmar R. Zaiane, 2000

Structural Programming and Data Structures

University of Alberta , g
y o 9

The Java Inheritance Tree

¢ In general, Person can have other subclassgs
as well, say Teacher.

* We put all the classes in arheritance tree
with class Object as the root.

« We draw the tree with the root at the top.

0Dr. Osmar R. Zaiane, 2000 Structural Programming and Data Structures

University of Aberta g - 10}
So*
——

A3
QO

7z

Outline of Lecture 24 i

* Subclasses and Superclasses
¢ Type inheritance

¢ Method inheritance

¢ Representation inheritance

¢ Constructor inheritance

Type Inheritance

* We say that a subclassherits all of the
messages from its superclass.

< Any message that can be sent to an instanc¢
of a class can also be sent to an instance of
its subclasses.

¢ However, you can add additional instance
messages and static messages to a subclasp.

£0r. Osmar R. Zaiane, 2000 Structural Programming and Data Structures Universiy of Aberta g 11]
L3

£10r. Osmar R. Zaiane, 2000 University of Aberta

Structural Programming and Data Structures. i 12|

R

Type Inheritance (con’t)

« If you declare the type of a variable to be
some class, it can then be bound to an
instance of that class or any subclass.

« If the type of a message parameter or the
return type of a message is a class, you can
use any subclass as well.

¢ The property of being able to use an instancg

of a subclass, wherever you can use an
instance of a class is calledbstitutability .

£10r. Osmar R. Zaiane, 2000 Structural Programming and Data Structures Universiy of Aberta g 13

Type Inheritance Example

¢ Assume that we are defining a class called Stgre.

¢ Assume that we have already defined a class
called Person, with a message called name() g
two subclasses: Student and Teacher.

Assume that we have defined a message in th

“Store” class called register that takes a Persop as

a parameter:

public void register(Person aPerson) {
/I Register the given Person as a customer.

£10r. Osmar R. Zaiane, 2000 Structural Programming and Data Structures Universiy of Aberta g - 14|

Type Inheritance Example (con't)
* Here is a method that creates a Person, Studer

Teacher customer, depending on a char paramgter.

public Person @ateCustomer(char aChar, String aString){
Person customer;

if (@Char ==T") customer = new Teacher(nameString)
else if (aChar == 'S’) customer = new Student(nameString
else customer = new Person(nameString);

System.out.printin(“Welcome “ + customer.ngije
this.register(customer);
return customer;

t or

Instance Variable and Static Variable
(Representation) Inheritance

« In Java, a subclass also inherits all of the
instance variables and all of the static
variables of its superclass.

« However, if a variable is private, it cannot
be accessed directly in the subclass code.

« If a variable is declared asotectedit can
be accessed directly in the subclass code.

¢ A subclass can also add state by defining
additional instance and static variables.

0Dr. Osmar R. Zaiane, 2000 Structural Programming and Data Structures University of Aberta g - 15| 0Dr. Osmar R. Zaiane, 2000 Structural Programming and Data Structures University of Aberta g - 16|
s 19 &
=
-5
A Method (Implementati
=) etho plementation

Outline of Lecture 24 i

¢ Subclasses and Superclasses
¢ Type inheritance

¢ Method inheritance

« Representafion inheritance

¢ Constructor inheritance

£10r. Osmar R. Zaiane, 2000 Structural Programming and Data Structures

Universiy of Aberta g - 17]

Inheritance

* In Java, a subclass also inherits the methodj
of its superclass, so they do not have to be r
implemented.

* However, you can alsoverride any method
if you want.

« In addition, you can add some code to an
inherited method, using tieeiper object
reference.

114
1

£10r. Osmar R. Zaiane, 2000 Structural Programming and Data Structures Universiy of Aberta g 18]

Method O\(erride

instance variable_1

D3
/U@

Outline of Lecture 24 i

Object of class C1 - -~ i i o
instance variable_2 | &
instance variable_1 @
instance variable_2 Z instance variable_n| £ ¢ Subclasses and Superdagses
% o
instance variable_n etho : o I I
[[veinodta - §_> * Type inheritance
Il instance variable_n+1 ®» i 1
[[etoas | o * Method inheritance
s * Representation inheritance
Class C1 Class C2 P
JE— T » Constructor inheritance
Method_a
SuperMethod_a(V
Dr. Osmar R. Zaiane, 2000 Structural Programming and Data Structures. University of Alberta i 19| 0Dr. Osmar R. Zaliane, 2000 Structural Programming and Data Structures. University of Aberta i 20}
i3 i3
Representation (or Data) Representation/Implementation
Inheritance Inheritance - Example
public class Person {
. .= = /I Each instance represents a Person.
Object ofclassC1 - - instance variable_|1 o
- instance variable_2 | & e .
instance variable_: o8 /! Public methods
instance variable_: instance variable_n | £ public void output() {
. lethod_a =3 /I Output a representation of myself
Tﬁi'"ztta';‘:e ;’a"ab'ef | ey 2 System.out.print(“name: * + this.name + “ age:);
Method_b - B instance variable_nd1 3 System.out.print(this.age());
Method_c o) }
N .. name isprotected: it is
/I Instance Variables / accessed only by class
protected String name; Person and its subclasses.
private Date birthdate;
[Dr. Osmar R. Zaiane, 2000 Structural Programming and Data Structures. University of Alberta ‘:"‘ 21] 0Dr. Osmar R. Zaliane, 2000 Structural Programming and Data Structures. University of Aberta ‘:"‘ 22|
— 1 — 1
Representation /Implementation -
Inheritance - Example (con’t) o2

public class Student extends Person {
/I Each instance represents a Student.
/I Public methods

public void output() {

/I Output a representation of myself
super.output();
System.out.print(* id: “);
System.out.print(this.id);

Calls the output()
method of the
superclass Person.

}

/I Instance Variables
/I cannot access birthdate, but can access name because it is protectgd
private int id;

£0r. Osmar R. Zaiane, 2000 Structural Programming and Data Structures Uriversity of Aberta g - 23
=<

Outline of Lecture 24 i

¢ Subclasses and Superclasses
* Type inheritance

* Method inheritance

* Representation inheritance

¢ Constructor inheritance

01Dr. Osmar R. Zalane, 2000 Structural Programming and Data Structures. University of Aberta i 24
e

Constructor Chaining

« Constructors are not inherited like other
methods. We say constructors are chained.

« If you want to call another constructor in
the same subclass, you just ugest)” with
the appropriate arguments.

« If you want to call another constructor in
the superclass, you just usiper()’ with
the appropriate arguments.

Constructor Chaining (con’t)

* However, each constructor must “ultimately” call
one of the constructors in its superclass.

¢ This can be done in one of three ways:

— An explicit call to super() with arguments.

— A call to another constructor in the subclass using this()
with arguments.

— If neither of these appear as the first statement of the
subclass constructor, the compiler inserts an implicit
call to the zero argument super constructor gipe
However, the a constructor with no arguments should
exist in the superclass.

[1Dr. Osmar R. Zatane, 2000 Structural Programming and Data Structures. University of Aberta g - 25 0Dr. Osmar R. Zaiane, 2000 Structural Programming and Data Structures University of Aberta g - 26
s I s
7
Constructors - Example Constructors - Example (con't)
public C!ass Person { public class Student extends Person {
/I Each instance represents a Person. Jl Each instance represents a Student.
/I Constructors public Student() {
public Person() { /I Set the name: “unknown”, birtdate: today, id: O
/I Set the name “unknown” and birtdate: today , this.id = 0;// implicit call to super(); first
this.name = “unknown”;
L _ ©o public Student(String nameString) {
this.birthdate = new Date(); /I Set the given name, birthdate: today, id: 0
} super(nameString)/ explicit call
this.id = 0;
public Person(StringameString) {)) o
/I Set the given name and birthdate: today public Student(String namesString, int anint) {
oL . /I Set the given name and id, birthdate: today
this(); // do the 0 argument constructor first this(nameString)y or super(nameString)
this.name = nameString; this.id = anint;
} }
[1Dr. Osmar R. Zafane, 2000 Structural Programming and Data Structures. University of Aberta g - 27 0Dr. Osmar R. Zaiane, 2000 Structural Programming and Data Structures Universiy of Aberta g - 28]
M M

Multiple Inheritance

< Multiple inheritance is the inheritance of

properties from more than just one base clags.

¢ Java does not allow multiple inheritance.

¢ Other Object-Oriented languages such &s C
allow multiple inheritance;

Simple Multiple
inheritance inheritance
£1Dr. Osmar R. Zalane, 2000 Structural Programming and Data Structures University of Aberta ‘i‘ 29

