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Abstract

We consider the unsplittable flow problem on a line. In this
problem, we are given a set of n tasks, each specified by a
start time si, an end time ti, a demand di > 0, and a profit
pi > 0. A task, if accepted, requires di units of “bandwidth”
from time si to ti and accrues a profit of pi. For every time
t, we are also specified the available bandwidth ct, and the
goal is to find a subset of tasks with maximum profit subject
to the bandwidth constraints.

In this paper, we present the first polynomial-time
O(log n)-approximation algorithm for this problem. No
polynomial-time o(n)-approximation was known prior to
this work. Previous results for this problem were known
only in more restrictive settings, in particular, either if
the given instance satisfies the so-called “no-bottleneck”
assumption: maxi di ≤ mint ct, or else if the ratio of
the maximum to the minimum demands and ratio of the
maximum to the minimum capacities are polynomially (or
quasi-polynomially) bounded in n. Our result, on the other
hand, does not require any of these assumptions.

Our algorithm is based on a combination of dynamic
programming and rounding a natural linear programming
relaxation for the problem. While there is an Ω(n) inte-
grality gap known for this LP relaxation, our key idea is to
exploit certain structural properties of the problem to show
that instances that are bad for the LP can in fact be handled
using dynamic programming.

1 Introduction

In the Unsplittable Flow Problem (ufp), we are given
an undirected graph G = (V, E) with edge capacities
{ce}e∈E , a set of n pairs of vertices called demand pairs
T = {(si, ti)}1≤i≤n where each pair si, ti has a demand
value di > 0 and profit pi > 0. We obtain a profit of pi

if we can route the total demand di from si to ti along
a single path. A subset S ⊆ {1, . . . , n} of the demands
is called feasible if all the demands in S can be routed
simultaneously without violating any edge capacity, i.e.,
the total demand flow on each edge e is at most ce. The
goal is to find a feasible set of demand pairs and paths
to route the corresponding demands while maximizing
the total profit obtained from the demand pairs that are
fully routed. The ufp is NP-hard even when restricted
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to very special cases. For instance, if the entire graph G
is a single edge, the ufp specializes to the Knapsack

problem. When all the edge capacities as well as all
the demands and profits are 1, the ufp specializes to
the well-studied maximum edge-disjoint paths problem
(edp). This special case is NP-hard even for restricted
classes of graphs, like planar graphs.

There is a large amount of research focused on the
study of ufp on line graphs.1 In such an instance,
the input graph G is an undirected path (line). The
study of ufp on line graphs is motivated by several
applications such as bandwidth allocation of sessions
on a shared communication link, job scheduling with
known machine requirements and time windows, the
general caching problem with varying page sizes and
available memory and so on. In fact, ufp on line graphs
can be thought of as a scheduling problem called the
Resource Allocation Problem (or rap for short). In this
problem, we are given n tasks, each specified by a start
time si, an end time ti, a demand di, and a profit pi.
The task i, if scheduled, requires di units of a resource
in the time interval [si, ti), called the span of i, and
is assumed to accrue a profit of pi. The resource (e.g.,
CPU), which is shared among scheduled tasks, is present
to an extent ct at time t. We refer to ct as the capacity
at time t. The problem is to find a subset S of the
tasks such that

∑

i∈S pi is maximized while satisfying
the resource capacity constraints at all times. It is easy
to see the correspondence between the tasks in rap

and demand pairs in ufp on line graphs. This problem
has also been studied under names such as “Bandwidth
Allocation”, “Resource Constrained Scheduling”, and
“Call Admission Control”.

ufp continues to be a difficult problem even when
restricted to line graphs and obtaining a reasonable ap-
proximation for it has resisted several attempts. No
non-trivial approximation for this problem is known pre-
viously without any extra assumptions on the param-
eters of the input. One difficulty is that the natural

1We use the term “line graphs” to refer to graphs that consist
of a simple path, following the previous works on ufp. This term
may not be confused with a more standard notion of line graphs
in graph theory, i.e., a graph obtained from another graph by
replacing edges by vertices and making two vertices adjacent if
the corresponding edges are incident.



LP relaxation for this problem has an integrality gap of
Ω(n) and obtaining an approximation algorithm with
performance ratio o(n) has been an interesting open
question. As we discuss below, all previous results re-
quire extra assumptions. The most widely used assump-
tion is the so called no-bottleneck assumption, which
states that, maxi di ≤ mine ce. This requires that the
demand of every task be no more than the capacity
of every edge (and not just those edges that this task
spans). The no-bottleneck assumption imposes a rather
strong restriction on the instances, and seems to ex-
clude the truly hard cases of the problem. For example,
the integrality gap instance mentioned above does not
satisfy this assumption.

1.1 Previous work. As stated above, when all the
demands, capacities, and profits are one, we obtain
a well-studied problem of edp. This problem is NP-
hard in general undirected graphs (with non-constant
number of terminal-pairs), and NP-hard even with only
two terminal-pairs in directed graphs (see Fortune et al.
[11]). Kleinberg [15] proved that edp is approximable
within a factor of O(

√

|E|). This was later generalized
to ufp by Srinivasan [19] and Baveja and Srinivasan
[6] under no-bottleneck assumption: maxi di ≤ mine ce.
More recently, Chekuri et al. [9] improved these
results to O(

√

|V |)-approximation. On the other hand,
Guruswami et al. [14] proved that edp on directed
graphs is NP-hard to approximate within a factor of
Ω(|E| 12−ε) for any constant ε > 0. In the undirected
setting, Andrews et al. [1, 2] showed that the problem

is quasi-NP-hard to approximate within Ω(log
1

2
−ε |E|)

for any ε > 0. All these results give the same hardness
for ufp even with the no-bottleneck assumption in the
corresponding model. Azar and Regev [3] proved that
without the no-bottleneck assumption, ufp is NP-hard
to approximate within a factor of Ω(|E|1−ε). Garg et al.
[13] proved that ufp is APX-hard on trees (and even on
stars with unit demands).

Several papers have studied ufp and edp on graphs
with high expansion. For instance, Frieze [12] proved
that for (large) constant-degree regular expanders with
sufficiently high expansion, there is a constant c such
that any cn/ logn pairs, such that no vertex appears
in more than O(1) pairs, can be connected via edge-
disjoint paths. This implies an O(log n)-approximation
for edp on such expanders. Using earlier works by
Kleinberg and Rubinfeld [16], Srinivasan [19] gave an
O(log3 n)-approximation for uniform capacity ufp (re-
ferred to as ucufp) on expanders. Some improve-
ments were obtained by Kolman and Scheideler [17] and
Chakrabarti et al. [8].

The special case of the edp problem on line graphs

corresponds to maximum independent set on interval
graphs, which can be solved in polynomial time. If
we have uniform capacities (i.e., ucufp), then the
problem is NP-hard even on line graphs. This problem
is equivalent to a resource allocation problem that has
been studied by Bar-Noy et al. [5] and Phillips et
al. [18]. The first constant approximation algorithm
for ucufp on line graphs was provided by [18]. The
approximation ratio was later improved in a series of
papers [5, 7] to (2 + ε).

For the general ufp on line graphs, as mentioned
earlier, the problem has not been easy to approximate.
Many of the previous works have simplified the problem
by making some extra assumptions in order to get rea-
sonable approximations. For ufp on line graphs, with
the no-bottleneck assumption, Chakrabarti et al. [8]
presented the first constant approximation which was
later improved by Chekuri et al. [10] to a (2 + ε)-
approximation (again under the no-bottleneck assump-
tion). Bansal et al. [4] proved that if all the demands,
edge-capacities, and profits are quasi-polynomial in the
number of pairs, i.e., at most O(2polylog(n)), then there
is a (1+ ε)-approximation algorithm that runs in quasi-
polynomial time. Chakrabarti et al. [8] also proved that
the integrality gap of the natural LP relaxation of the
ufp on line graphs is Ω(log(maxi di

mini di
)) which is Ω(n) in

their example.

1.2 Our result and techniques. In this paper we
study the ufp on line graphs, or equivalently, the
Resource Allocation Problem (rap). We present an
O(log n)-approximation for this problem without any
extra assumptions, thus beating the integrality gap
for the natural LP relaxation. This also implies an
O(log n)-approximation for ufp when the underlying
graph is a cycle, also called ring graphs.

The following is a natural LP relaxation of the
problem. We associate a variable xi to denote if task i
is picked in the solution.

(LP) max
∑

i pixi

s.t.
∑

i:t∈[si,ti)
dixi ≤ ct, 1 ≤ t ≤ T

xi ∈ [0, 1], 1 ≤ i ≤ n

It is instructive to consider the following Ω(n) integral-
ity gap example, that we refer to as the staircase in-

stance. This example first seems to have been observed
by Chakrabarti et al. [8]. We have n tasks and task i
has start time si = 0 and finish time ti = i, i.e., span
[0, i), and di = 2−i. All the tasks have profit 1 and the
capacity ct during interval [t − 1, t) is equal to 2−t, for
1 ≤ t ≤ n (see Figure 1).

Now consider the fractional solution in which xi =
1/2 for all tasks i. It is easy to see that it is feasible
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Figure 1: The example showing an integrality gap of Ω(n). The demands are not drawn to scale as they decrease
exponentially.

for the LP and accrues a profit of n/2 = Ω(n). On the
other hand, we claim that any integral solution can have
profit of at most 1. To see this, let dj∗ be the demand
(task) with the smallest index that is selected in the
solution. Then this demand saturates time [j∗ − 1, j∗)
(recall that dj∗ = 2−j∗ = ct for t ∈ [j∗ − 1, j∗)). So no
other task with index j ′ > j∗ can be selected. Note
that this example does not satisfy the no-bottleneck
property that maxi di ≤ mint ct and that the demands
(and capacities) are exponentially large in n. Therefore,
in a sense, the extra assumptions used in earlier works
[8, 10, 4] to obtain a constant ratio approximation for
ufp on line graphs may actually be excluding the truly
hard cases of the problem.

The starting point for our results is the observation
that even though the staircase-like instances described
above are bad for the LP, they can be well approximated
using dynamic programming. In particular, we show
that any instance can essentially be decomposed into
two parts. The first part can be solved well using LP
relaxation, and the second part can be solved well using
dynamic programming. The overall algorithm simply
chooses the best of these two solutions. The second part
requires us to identify some key structural properties
such as being “intersecting” and “laminar”, that make
the instance amenable to dynamic programming.

Outline of our algorithm. Our algorithm has the
following steps. First, we show (by a simple argument)
that at the loss of an O(log n) factor, the problem can
be reduced to instances where all requests intersect at a
common time. We then describe an O(1)-approximation
for such intersecting instances. To do the latter, we
partition the tasks into slack tasks and tight tasks. A
task is called slack if its demand is a small fraction of the
minimum capacity available during its span. A task that
is not slack is called tight. We show that if all the tasks
are slack and intersecting, then there is a randomized
rounding based O(1)-approximation, building on the
ideas of Calinescu et al. [7]. For tight task instances,
we show that requiring that each task be tight and the

instance be intersecting, imposes a lot of structure on
the instance. Handling tight task instances is perhaps
the most interesting contribution of this paper. These
instances seem to capture most of the inherent hardness
of the problem. For example, note that the staircase
instance above satisfies both the intersecting property
and each task there is tight.

2 Reduction to Intersecting Instances

We start with some notation. For a task i, we de-
fine the span as span(i) = [si, ti) and the length as
length(i) = ti − si. We can assume that for each
task i, the start and end times si and ti are integers
in the range {1, . . . , 2n}, since this leaves the problem
combinatorially unchanged. Each edge corresponds to
some interval [i, i + 1). Thus task i, spans the edges
[si, si + 1), . . . , [ti − 1, ti). We say that tasks i and j
intersect if span(i)∩ span(j) 6= ∅. We call a subset S of
tasks “admissible” if it satisfies the capacity constraints:
∑

i∈S:t∈span(i) di ≤ ct for all t. Without loss of gener-

ality, we assume that each task (by itself) is admissi-
ble. Thus, any algorithm can trivially obtain a profit
of pmax = maxi pi. If we are willing to lose a factor of
(1 − ε) in the approximation ratio, we can assume that
each pi ≥ εpmax/n, by discarding tasks with lower profit
if necessary. Moreover, the profits can be assumed to
be integers.

We call an instance of rap “intersecting” if all the
tasks intersect at a single time, i.e., there exists a time
tmode such that tmode ∈ span(i) for all tasks i. The
following lemma shows that rap can be reduced to the
intersecting instances of rap with a loss of O(log n)
factor in the approximation.

Lemma 2.1. If there is a ρ-approximation for the inter-

secting instances of rap, then there is an O(ρ · log n)-
approximation for rap.

Proof. Consider a general instance of rap. We first
partition the tasks into groups according to their lengths
length(i). We say that a task i belongs to group r if 2r ≤



length(i) < 2r+1. Clearly there are at most dlog(2n)e
groups {0, 1, . . . , dlog(2n)e − 1}. Here the logarithm
is taken to the base 2. Our algorithm computes an
O(ρ)-approximation for every group taken one at a
time, as described below, and outputs the maximum
profit solution out of these dlog(2n)e solutions; thereby
yielding an overall O(ρ·log n) approximation. It is, thus,
enough to show how to obtain an O(ρ)-approximation
for a single group.

Now fix some group r. For an integer j, a task i
in group r is said to belong to part j if it spans time
j · 2r. Since 2r ≤ length(i) < 2r+1 for every task i
in group r, each such task belongs to some part j for
some integer j (if it spans two such times, we assign
it to both parts). Moreover, a task in part j cannot
intersect any task that belongs to part j + 4. Now, for
a = 0, 1, 2, 3, let Sa denote the set of group r tasks in
parts j ≡ a mod 4, respectively. Each Sa is a disjoint
union of intersecting instances of rap, and moreover our
algorithm can compute these instances.

Given a ρ-approximation algorithm for intersecting
instances, our algorithm computes ρ-approximation to
each Sa by taking a union of ρ-approximations of parts j
for each j ≡ a mod 4. Finally, it outputs the maximum
profit solution among the solutions for S0, S1, S2, and
S3 for all possible values of r. It is easy to see that this
algorithm is a 4ρ-approximation for group r. Thus the
proof is complete.

3 Algorithm for Intersecting Instances

Given Lemma 2.1, we now present a constant factor
approximation for intersecting instances of rap. Recall
that for an intersecting instance of rap, there exists a
time tmode such that tmode ∈ span(i) for all tasks i. The
reason we call this time tmode will be clear from the
following lemma.

Lemma 3.1. Without loss of generality, we can assume

that the capacity profile {ct | 1 ≤ t ≤ 2n} is “unimodal”,

i.e., ct ≤ ct+1 for all 1 ≤ t < tmode and ct ≥ ct+1 for

all tmode ≤ t < 2n.

Proof. Consider any t ∈ [1, tmode). Note that if task i
satisfies t ∈ [si, ti), then it also satisfies t + 1 ∈ [si, ti).
Therefore setting ct := min{ct, ct+1} does not change
the set of feasible solutions. Thus we can assume
ct ≤ ct+1 without loss of generality. A similar argument
also works for t ∈ [tmode, 2n).

3.1 The laminar instances. We call an instance of
rap “laminar” if the tasks can be ordered i = 1, . . . , n
such that span(i+1) ⊆ span(i) for all 1 ≤ i < n. Before
dealing with the general intersecting instances, we first
observe that there is an FPTAS for laminar instances.

Lemma 3.2. There is an FPTAS for the laminar in-

stances of rap. For any ε > 0, the algorithm obtains a

(1 + ε)-approximation in time O(n2/ε2 · log(nP )) if the

profits are integers in the range [1, P ].

Proof. The algorithm is based on dynamic program-
ming similar to the one used for knapsack problems.
Given integers i and p, let D(i, p) denote the minimum
total demand of an admissible subset S ⊆ {1, . . . , i} of
the first i tasks such that

∑

j∈S pj ≥ p. We use the
convention D(i, p) = ∞ if no such S exists. The values
D(i, p) are computed in the order of increasing i. For
i = 1, we set D(1, p) = 0 if p ≤ 0; or D(1, p) = d1 if
p1 ≥ p (recall that {1} is admissible); or ∞ otherwise.
Now we use the following recurrence:
If D(i, p − pi+1) + di+1 ≤ mint∈span(i+1) ct, then

D(i + 1, p) = min{D(i, p), D(i, p− pi+1) + di+1},

else
D(i + 1, p) = D(i, p).

The correctness follows as the tasks are laminar,
and hence the decision whether task i + 1 can be
admitted to set S ⊆ {1, . . . , i} or not, depends only
on the total demand of S.

The above dynamic program computes the opti-
mum solution in time O(n · nP ). Moreover, if we know
the value opt of the optimum solution, the above dy-
namic program runs in time O(n · opt). To obtain a
(1 + ε) approximation, we can make the running time
polynomial in n, log P , and 1/ε as follows. We guess
the value of opt in the range [1, nP ] within a factor of
(1+ε), remove all the tasks with profit less than εopt/n,
and then round the profits pi to bnpi/(εopt)c. After
the rounding, the optimum value is bn/εc, and hence
the above algorithm computes an (1+ ε)-approximation
in time O(n · n/ε). Since the algorithm iterates over
O(1/ε·log(nP )) guesses of opt, the overall running time
is O(n2/ε2 · log(nP )).

3.2 The general intersecting instances. We now
consider the general intersecting instances. We partition
the tasks into four disjoint types as follows. Let ε > 0
be a constant to be fixed later.

1. A task i is called “slack” if di ≤ ε · ct for all
t ∈ [si, ti).

2. A task i is called “left-tight” if di > ε · ct for
some time t ∈ [si, tmode) and di ≤ ε · ct for all
t ∈ [tmode, ti).

3. A task i is called “right-tight” if di > ε · ct for
some time t ∈ [tmode, ti) and di ≤ ε · ct for all
t ∈ [si, tmode).



4. A task i is called “tight” if it is not slack, left-tight,
or right-tight.

In the following sections, we show how to obtain a
constant factor approximation for the case when all
the tasks belong to a single type. Clearly, given a
general intersecting instance, if we partition the set
of tasks into these four types and find a constant
factor approximation for each group separately, the
maximum profit solution among these four solutions
gives a constant approximation for the given instance.

3.2.1 Slack tasks. For the case of slack tasks, we
give an LP based O(1)-approximation. Our algorithm
is an adaptation of the randomized rounding algorithm
of Calinescu et al. [7]. In particular, we need to adapt
their algorithm to work for unimodal capacity profiles.
We lose an additional factor 2 in the process.2

Our algorithm begins by solving the LP relaxation
(LP) described in Section 1.2. Let x∗

i be some optimum
LP solution. By scaling if necessary, we assume that the
smallest capacity is 1. We partition the tasks into two
sets: C≤ be the set of tasks i such that csi

≤ c(ti−1); and
C> be the set of tasks i such that csi

> c(ti−1). In other
words, C≤ is the set of tasks i for which the capacity
at the starting time si is at most that at the last time
ti − 1 at which task i is active. Clearly, at least one of
the sets C≤ or C> accrues at least half of the fractional
profit, i.e., either (1)

∑

i∈C≤
pix

∗
i ≥ 1

2

∑

i pix
∗
i , or (2)

∑

i∈C>
pix

∗
i ≥ 1

2

∑

i pix
∗
i .

Let us assume that case (1) holds. Below we present
how to round the fractional solution for C≤ to get an
admissible integral solution of almost equal cost. An
analogous argument holds for the other case (2); and is
omitted.

The rounding algorithm proceeds as follows. We
ignore the tasks in C> and order the tasks in C≤ in
the increasing order of their starting times. Let δ =
ε+ε1/4. We choose each task i ∈ C≤ independently with
probability (1 − δ)x∗

i . Let R denote the set of chosen
tasks. Let these tasks in R be i1 < i2 < · · · < i|R|.
We construct a sequence of sets ∅ = S0, S1, . . . , S|R| as
follows: let Sr = Sr−1∪{ir} if Sr−1∪{ir} is admissible;
or let Sr = Sr−1 otherwise. The algorithm outputs the
set S = S|R|.

Note that S is a random set, and the event whether
task i lies in S is correlated with the events whether
other tasks lie in S. The following theorem states the
probability with which a particular task lies in S.

2The original argument of [7] holds only for non-decreasing
capacity profiles.

Theorem 3.1. For any request i ∈ C≤, it lies in S with

probability at least (1 −√
ε) · (1 − ε − ε1/4)x∗

i .

Proof. Define the following random variables: for i ∈
C≤, let Xi = 1 if i ∈ R, and 0 otherwise; and let
Yi = 1 if i ∈ S, and 0 otherwise. Note that Xi’s are
independent, but Yi’s are not.

Fix 1 ≤ r ≤ |R| and consider the task i = ir. We
are interested in e[Yi]. Since S ⊆ R, we have Yi ≤ Xi

and hence e[Yi] ≤ e[Xi]. Consider the event Er that
[Yi = 0 | Xi = 1]. If Er happens, then it must be the
case that Sr−1∪{i} is not admissible. The lemma below
characterizes the reason Er happens.

Lemma 3.3. The event Er holds if and only if the

capacity constraint at the start time si of task i is

violated by the set of tasks Sr−1 ∪ {i}.

Proof. The proof is based on the fact that the capacity
profile is unimodal with the maximum capacity at
time tmode and the defining property of tasks in C≤.
By definition, Er happens if and only if the capacity
constraint at some time t ∈ [si, ti) is violated by
Sr−1 ∪ {i}. If t ≤ tmode, then from the assumption
that capacity profile is unimodal, we have csi

≤ ct. If
t > tmode, then since i ∈ C≤, we have csi

≤ cti−1 ≤ ct.
Since all the tasks in Sr−1 ∪ {ir} cross si and may or
may not cross t, we get that Sr−1 ∪ {ir} must violate
the capacity constraint at si.

Thus, for Er to hold, the total demand of tasks
in R ∩ {1, . . . , i − 1} must exceed csi

− di. We now
use Chebyshev’s inequality to bound pr[Er]. For j =
1, . . . , i−1, consider a random variable Dj = dj if j ∈ R,

and 0 otherwise. Let D =
∑i−1

j=1 Dj .

Lemma 3.4. pr[Er] ≤
√

ε.

Proof. We shall show that pr[Er] ≤ pr[D > csi
− di] ≤

pr[D > csi
− εcsi

] ≤ √
ε. The first inequality follows

from the algorithm and the discussion above, the next
inequality follows since all tasks are slack. Below we
prove the last inequality.

We have e[D] =
∑i−1

j=1 e[Dj ] =
∑i−1

j=1 dj(1− δ)x∗
j ≤

(1− δ)csi
. The last inequality holds since the fractional

solution x∗ satisfies the capacity constraint at time si.
Since Dj ’s are independent,

var[D] =

i−1
∑

j=1

var[Dj ] ≤
i−1
∑

j=1

e[D2
j ] =

i−1
∑

j=1

d2
j · (1 − δ)x∗

j

≤ εcsi

i−1
∑

j=1

dj · (1 − δ)x∗
j ≤ ε(1 − δ)c2

si
.



The second last inequality follows since all the tasks are
slack. Now we use Chebyshev’s inequality:

Pr
[

D − e[D] ≥ t
√

var[D]
]

≤ 1

t2

for t > 0. Putting t = ε−1/4, we get

pr[D > (1 − δ)csi
+ ε−1/4 ·

√

ε(1 − δ)c2
si

] ≤ √
ε.

That is, pr[D > csi
· (1 − δ + ε1/4

√
1 − δ)] ≤ √

ε.
Now substituting δ = ε + ε1/4, we get that pr[D >
csi

· (1 − ε)] ≤ √
ε as desired.

Now,

e[Yi] = pr[Yi = 1 | Xi = 1] · pr[Xi = 1]

+pr[Yi = 1 | Xi = 0] · pr[Xi = 0]

= pr[Yi = 1 | Xi = 1] · pr[Xi = 1]

= (1 − pr[Er]) · (1 − δ)x∗
i

≥ (1 −√
ε) · (1 − ε − ε1/4)x∗

i .

This completes the proof of Theorem 3.1.

If z∗ is the value of the LP solution for the slack
tasks, using Theorem 3.1, the expected value of the
solution obtained by the algorithm is at least 1

2 (1 −√
ε) · (1 − ε − ε1/4)z∗. The algorithm and its analysis

above only uses second moments and hence can be easily
derandomized by using pairwise independent family of
random variables.

3.2.2 Tight tasks. Recall that all tasks are admis-
sible by themselves. We partition them into classes
based on the demands. A task i belongs to class r if
2r ≤ di < 2r+1. Let k = dlog(1/ε)e + 1 and let Ca

for a = 0, 1, . . . , k − 1 be the collection of tasks of class
r ≡ a mod k. It suffices to design a constant factor
approximation for any fixed collection Ca. The final al-
gorithm can simply apply this algorithm to each of these
collections and choose the best solution, thereby losing
a factor of at most k in the approximation.

Fix a ∈ {0, 1, . . . , k − 1}. It is easy to see that if
i, j ∈ Ca such that i is of a higher class than j, then
dj < ε · di. We now argue that span(i) ⊆ span(j).
Suppose, on the contrary, that this does not hold and
that without loss of generality, there exists t ≤ tmode

such that t ∈ span(i) \ span(j). Since the capacity
profile is unimodal, we have dj < εdi ≤ εct ≤ εct′ for all
t′ ∈ [sj , tmode). This contradicts the fact that task j is
tight and not right-tight.

We next argue that the optimum algorithm can pick
at most 2/ε tasks from any class. Suppose, on the
contrary, that the optimum picks more than 2/ε tasks

from some class. Consider the task i among these with
largest start time si. Since each job in the class of i has
demand at least di/2, it must be that di/2 · 2/ε < ct

for all t ∈ [si, tmode). However this contradicts the fact
that task i is tight and not right-tight.

We will use the fact that optimum picks at most
2/ε tasks from any class in our dynamic program. Our
dynamic program is similar to the one presented for the
laminar case in Section 3.1 and computes a maximum
profit set of tasks among the admissible sets which pick
at most 2/ε tasks from each class. We then use the
standard trick used before to transform this pseudo-
polynomial algorithm into a PTAS. The algorithm is
essentially the same as for the laminar case, except that
at each step, instead of considering the possibility of
adding one task to the subproblem, we consider the
possibility of adding a subset of size at most 2/ε of the
tasks in a class. More specifically, we define D(r, p),
for r ≡ a mod k, as the minimum total demand of
an admissible subset S of tasks of class at most r in
Ca such that

∑

j∈S pj ≥ p with the condition that
no more than 2/ε tasks are selected from each class.
We populate the table in the increasing order of class
r. It is easy to set the initial values for the smallest
value of r ≡ a mod k. For computing the remainder
of the table, we use the following recurrence. For any
subset Q of size at most 2/ε of tasks in class r + k,
let PQ =

∑

j∈Q pj be the total profit of the tasks in
Q and for each time t in the span of some task in Q,
let DQ(t) =

∑

j∈Q:t∈span(j) dj be the total demand in

Q which spans t. We use DQ =
∑

j∈Q dj to denote
the total demands of all the tasks in Q. Note that the
tasks in Q form a demand profile, so the total demand
DQ(t) of the tasks in Q over a time t may be different
for different times. We compute D(r + k, p) as follows:

(3.1) D(r + k, p) = min
Q

(D(r, p − PQ) + DQ)

where the minimum is taken over all subsets Q (includ-
ing the empty subset) of tasks from class r + k such
that

• |Q| ≤ 2/ε,

• for every time t in the span of some task in Q, the
capacity constraints are satisfied: D(r, p − PQ) +
DQ(t) ≤ ct.

Note that each such entry can be computed in time that
is exponential in 2/ε but polynomial in n. Also, note
that here we crucially use the fact that the span of every
demand in a class r+k is contained in the span of every
demand in any class less than r + k.

We can easily transform this into a PTAS as in



the case of laminar instance. Overall we obtain a
(dlog(1/ε))e + 1)-approximation for the tight tasks.

3.2.3 Left-tight or right-tight tasks. We now de-
scribe our algorithm for the left-tight tasks. Our algo-
rithm for the right-tight tasks is similar and is omitted.
The algorithm for left-tight tasks is similar to that of
tight tasks, however there are some differences. Re-
call that each task is admissible by itself. As before,
we partition the tasks into classes based on the de-
mands. A task i is of class r if 2r ≤ di < 2r+1. Let
k = dlog(1/ε)e + 1 and let Ca for a = 0, 1, . . . , k − 1
be the collection of tasks of class r ≡ a mod k. The
algorithm computes a constant approximation for each
collection Ca and outputs the maximum profit solution
out of these k solutions.

Fix a ∈ {0, 1, . . . , k − 1}. As in the case of tight
tasks, we argue that if i, j ∈ Ca such that i is of a higher
class than j, then si > sj . Suppose, on the contrary,
that si ≤ sj . Since the capacity profile is unimodal,
we have dj < εdi ≤ εcsi

≤ εct for all t ∈ [sj , tmode).
This contradicts the fact that task j is left-tight. Note
however that unlike the case of tight tasks, span(i) may
not be a subset of span(j) (since the right end-points of
tasks need not satisfy the above property).

We again argue that the optimum algorithm picks
at most 2/ε tasks from any class. Suppose, on the
contrary, the optimum picks more than 2/ε tasks from
some class. Consider the task i among these with largest
start time si. It follows that di/2 · 2/ε < ct for all t ∈
[si, tmode) contradicting the fact that task i is left-tight.
So, if we optimally select an admissible subset of tasks
with at most (1− ε)/ε tasks from each class we obtain a
2/(1 − ε)-approximation for this collection of left-tight
tasks. Given that we have a total of k = dlog(1/ε)e+ 1
collections Ca, the overall approximation for left-tight
tasks will be 2/(1 − ε) · (dlog(1/ε)e + 1).

Even though we no longer have the property that
the span of a task is contained in the span of a task of
lower class, we can easily modify the previous dynamic
program to compute a maximum profit set of admissible
tasks with at most (1− ε)/ε tasks from each class. The
key idea is to ignore the capacity constraints to the right
of tmode altogether and consider subsets Q with at most
(1− ε)/ε tasks in the class r + k in the recurrence (3.1).
Recall that any left-tight task i satisfies di ≤ ε · ct for
any t ∈ [tmode, ti). Since we pick at most (1− ε)/ε tasks
from each class, for any t ≥ tmode, the total demand
from any single class that spans t is at most (1 − ε)ct.
As the demands of the tasks in different classes of any
fixed collection Ca differ by a factor of at least ε, the
total demands of all the tasks that span t ≥ tmode can
be at most (1− ε)ct + ε(1− ε)ct + ε2(1− ε)ct + · · · < ct

for any ε < 1. Thus we can never violate the capacity
constraints for any t ≥ tmode in our dynamic program.
As mentioned earlier, this dynamic program yields a
2/(1− ε) · (dlog(1/ε)e + 1) for left-tight tasks.

4 Ring graphs: when the graph is a cycle

The ufp on cycles can be solved approximately using
the algorithm for line graphs. The following approach
was observed in [8]. Consider an edge e in the cycle with
the smallest ce value and partition the set of demands
routed in the optimal solution opt into two sets: let
opt1 contain those demands that use edge e and let
opt2 contain those that do not use edge e. Since ce

has the smallest capacity, opt1 can be approximated to
within a factor of (1+ ε) by using the known PTAS [20]
for Knapsack. The instance defined by considering the
demands that do not use edge e is basically an instance
on a line graph (obtained by deleting edge e). Thus we
can use the algorithm presented in the previous section.
Returning the maximum of the two solutions obtained,
is an O(log n)-approximation for the problem on cycle
graphs.

5 Conclusions

An intriguing open question is whether there is an O(1)-
approximation, or even an approximation scheme for
the problem; we still do not know whether the ufp

on line graphs (without any extra constraints) is APX-
hard. Another interesting open question is to see if the
techniques developed in this paper can be generalized to
more families of graphs, e.g., trees. Even for restricted
families of trees, such as bounded degree trees, it seems
that some new ideas are needed to extend our results.
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