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Abstract

In the mobile facility location problem, which is a vari-
ant of the classical Uncapacitated Facility Location and k-
Median problems, each facility and client is assigned to a
start location in a metric graph and our goal is to find a
destination node for each client and facility such that every
client is sent to a node which is the destination of some fa-
cility. The quality of a solution can be measured either by
the total distance clients and facilities travel or by the maxi-
mum distance traveled by any client or facility. As we show
in this paper (by an approximation preserving reduction),
the problem of minimizing the total movement of facilities
and clients generalizes the classical k-median problem. The
class of movement problems was introduced by Demaine et
al. in SODA 2007 [8], where it was observed a simple 2-
approximation for the minimum maximum movement mo-
bile facility location while an approximation for the mini-
mum total movement variant and hardness results for both
were left as open problems. Our main result here is an 8-
approximation algorithm for the minimum total movement
mobile facility location problem. We also show that this
problem generalizes the classical k-median problem using
an approximation preserving reduction. For the minimum
maximum movement mobile facility location problem, we
show that we cannot have a better than a 2-approximation
for the problem, unless P = NP ; so the simple algorithm
observed in [8] is essentially best possible.

1 Introduction

Consider the following scenario. There is a company
with some manufacturing plants. There are also several re-
tail stores (with different demands) to which the products
must be shipped and we are interested in minimizing the
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cost of shipping. One possibility is to send the products to
each retailer from its closest manufacturing plant. Another
possibility is to set up a distribution center for each plant
(perhaps somewhere else), send the products from that plant
to the distribution center (in one shipment) and then for each
retailer ship the products from the closest distribution cen-
ter; this way we save on shipping cost as we might bring the
distribution center closer to the set of retailers it is serving
and combining the total demands of them into one big ship-
ment to be sent from the plant to the distribution center. This
problem can be modeled using the following natural gener-
alizations of the classical k-Median and Uncapacitated Fa-
cility Location (UFL) problems. Suppose we are given a
connected undirected graph G(V, E) with metric distances
dij between every pair of nodes i, j ∈ V . We have a set
of clients C with each ci ∈ C located at a node. We also
have a set of facilities F (corresponding to plants), each lo-
cated at a node. We want to move each facility and client in
the graph to a (possibly different) vertex such that in the fi-
nal configuration each client is at a node with some facility,
while minimizing the total cost of movements of facilities
and clients. Formally, we want to assign a destination vj for
each facility j to minimize

∑

j∈F djvj
+

∑

i∈C divi
where

vi is the nearest facility destination to client i. This is called
the minimum total movement mobile facility location prob-
lem, or TM-MFL. If we wish to minimize the maximum
distance a client or facility travels then we obtain minimum
maximum movement mobile facility location, or MM-MFL.
Total movement can be thought of as the total amount of re-
sources (e.g. gasoline) consumed by all facilities and clients
in reaching a valid solution while maximum movement can
be viewed as the time it takes to simultaneously move all
units to a valid configuration (e.g. response time). Note
that, just like in UFL, we assume that each facility can ser-
vice any number of clients co-located with it in the final
configurations.

These problems fall into a natural class of problems,
called movement problems, which were introduced by De-
maine et al. [8]. In these types of problems, we are typically



given an instance which contains a weighted graph G to-
gether with some pebbles on the vertices (and/or edges) and
a desired property P ; some examples of this property P can
be connectivity, independent set, or facility location. We are
looking to obtain a movement of pebbles so that the final
configuration of pebbles in the graph satisfies the desired
property P while minimizing some objective cost function.
Some of the natural objective cost functions considered are
the total movements of pebbles or the maximum distance a
pebble has to move. Many problems of this type arise nat-
urally in other areas, such as operation research, robotics,
and design of systems of wireless networks. For instance,
suppose each pebble corresponds to a wireless sensor and
our goal is to move these sensors around so that they form
a connected network. This corresponds to the movement
problem with property P being the subgraph induced by the
final pebbles’ locations being connected. (see e.g. [13, 3]
and the references in [8] for more applications).

The movement problems can be defined for different
properties P . Demaine et al. [8] considered some specific
movement problems, including the problem of connectiv-
ity (in which our desired property P is that the induced
subgraph by the final pebbles’ locations is connected), s, t-
connectivity (in which we want the induced subgraph by
the final pebbles’ locations contains both s and t in the
same connected component), and independent set (pebbles
should form an independent set) and gave approximation
algorithms and hardness results for each (for different ob-
jective functions). They also raised the question of move-
ment mobile facility location problem. For the minimum
maximum movement mobile facility location (MM-MFL),
they [8] observed that there is a simple 2-approximation and
asked whether this can be improved. They also left the prob-
lem of finding a good approximation algorithm for the min-
imum total movement mobile facility location (TM-MFL)
as an open question. In this paper, we answer both these
questions. For MM-MFL, we show that it is NP-hard to
obtain better than a 2-approximation. The main contribu-
tion of this paper is to present a constant factor approxima-
tion algorithm for the TM-MFL defined earlier. As we will
see, this problem in fact generalizes the classical k-median
problem. We show that there is an approximation preserv-
ing reduction from k-median to minimum total movement
facility location.

Related Works: In the classical (uncapacitated) facil-
ity location problem UFL, we are given a graph G(V, E)
with metric costs dij on the edges, a set of clients C ⊆ V ,
and a set of facilities F ⊆ V with each i ∈ F having
an opening cost fi. The goal is to open some of the fa-
cilities and assign each client to an open facility such that
the total cost of opening facilities plus the costs of clients
traveling to open facilities is minimized. The first approx-
imation algorithm for facility location had ratio O(log n)

and is due to Hochbaum [12]. Shmoys, Tardos, Aardal
[21] were the first to give a constant ratio approximation
for this problem; their algorithm had ratio 3.16. Later,
in a series of papers several constant approximation algo-
rithm were obtained for this problem with better ratios (see
[11, 7, 14, 16, 1, 22, 19, 4] and references in [4]). The best
known algorithm has ratio 1.5 [4]. Guha and Khuller [11]
showed that, unless NP ⊆ DTIME(npolylog(n)), there is
no better than a 1.463-approximation for UFL. Several vari-
ations of the facility location problem have been studied
such as capacitated facility location, in which there is a ca-
pacity on the number of clients that can be served at each
facility fi (e.g. see [18] and the references there).

Another well-studied related problem is the classical k-
median. In the k-median problem there is no opening
cost for facilities but we can open up to k facilities. In
the more general setting of k-median, each client ci ∈ C
can have a (positive) demand Di and the cost of serv-
ing this demand at location j (if there is facility there) is
Di · dij . The best known approximation algorithm for k-
median uses local search heuristics and has ration 3 + ε,
for any constant ε > 0, due to Arya et al [1]. On the
other hand, Jain, Mahdian, and Saberi [15] showed that un-
less NP ⊆ DTIME(nO(log log n)), then there is no 1.735-
approximation algorithm for the k-median problem.

A common generalization of both UFL and k-median is a
problem called k-facility location. The input to this problem
is like k-median, except that each facility has an openning
cost. The goal is to open at most k facilities and assign
clients to them to minimize the total cost. Devanur et al. [9]
have shown that k-facility location has a locality gap of at
most 5.

Demaine et al. [8] considered some classes of movement
problems. For the property of forming a connected induced
subgraph, they obtained approximation algorithms with ra-
tios O(

√

m/OPT ) and Õ(min{n, m}) for minimum max-
imum movement and total movement, respectively (where
n = |V (G)| and m = |E(G)|), and hardness of Ω(n1−ε)
for the total movement (they use the term “sum” to refer
to what we call “total” movement). They also considered
variations in which pebbles need to establish connectivity
between two given nodes s, t, or to form an independent set
(on the plane R

2).
Our results: We consider both the TM-MFL and MM-

MFL problems. We can assume each client represents one
unit of demand (to be serviced). If there are Di clients at a
vertex v, without loss of generality, we can assume that all
these clients have the same final destination in an optimal
solution. Therefore, we can combine them all into a single
client ci whose demand is equal to Di ≥ 1 and the cost of
moving client ci a distance of ` is Di · `. For this reason, we
consider the slightly more general version of TM-MFL in
which each client ci ∈ C has a demand Di ≥ 1 and the goal



is to assign a destination vj for each facility j to minimize
∑

j∈F djvj
+

∑

i∈C Didivi
where vi is the nearest facility

destination to client i. As mentioned earlier, the model we
consider here is the same as the one defined by Demain et
al. [8], which is an extension of Uncapacitated Facility Lo-
cation (UFL) and k-Median, in the sense that each facility
can serve an unbounded number of clients, and the cost as-
socicated with it is independent of the number of demands
(clients) it serves (in UFL, the cost is the openning cost fi,
here it is the cost of moving it to its final destination). Note
that the demand (number of individual clients) per node is
irrelevant in MM-MFL since we are only concerned with
the maximum distance. For TM-MFL restricted to trees it
is possible to obtain a pseudo-polynomial time exact algo-
rithm where the demands are polynomial in the size of the
input. Using the fact that every graph metric can be prob-
abilistically embedded into a tree with distortion O(log n)
[2, 10], this yields an O(log n)-approximation for TM-MFL
in general graphs in pseudo-polynomial time. However,
obtaining a true O(log n)-approximation seems non-trivial.
For example, unlike the classical facility location problem,
the natural greedy algorithm that tries to find good partial
solutions iteratively fails. Our main result in this paper is
the following.

Theorem 1.1. There is a polynomial time deterministic 8-
approximation algorithm for minimum total movement mo-
bile facility location (TM-MFL).

This algorithm is based on rounding an optimal solution
to an IP/LP relaxation of the problem in five major rounds.
Each round brings the solution closer to an integer solution.
This algorithm is inspired by the work of Charikar et al.
[6] but uses several new ideas, such as the total unimodu-
larity of the matching polytope as well as an augmenting
path argument to obtain a half-integer solution. Although
the algorithm is fairly involved, we believe some of the
ideas developed here might be useful in solving other com-
binatorial optimization problems. We can also show that
any natural local search algorithm that performs a bounded
number of exchange or switch operations at each iteration
will have an unbounded ratio (see the remark after Theo-
rem 1.4). This theorem is complemented by the following
whose proof follows almost immediately from the proof of
APX-hardness for uncapacitated facility location by Guha
and Khuller [11]:

Theorem 1.2. The minimum total movement mobile facility
location (TM-MFL) problem is APX-hard.

We also present an approximation preserving reduction
from k-median to TM-MFL. Note that the best approxima-
tion algorithm for k-median has ratio 3 + ε [1].

Theorem 1.3. If there is an α-approximation for TM-MFL
then there is an (α + o(1))-approximation for the k-median
problem.

Jain, Mahdian, and Saberi [15] proved that there is no
1.735-approximation algorithm for k-median unless NP ⊆
DTIME(npolylog(n)). By Theorem 1.3, the same hardness
holds for TM-MFL.

For the MM-MFL problem, there is a simple 2-
approximation algorithm (as observed in [8]) as follows: do
not move the facilities; only move each client to the nearest
facility. It is easily seen that the maximum distance traveled
in this solution is at most twice the optimum. We show that
this is essentially best possible:

Theorem 1.4. For any ε > 0, there is no (2 − ε)-
approximation algorithm for the minimum maximum move-
ment mobile facility location problem (MM-MFL) unless
P = NP .

Remark: Since the best known approximation algo-
rithm for k-median uses local search [1] and given the sim-
ilarity of the TM-MFL problem to k-median (e.g. by The-
orem 1.3), it is natural to guess that local search technique
might also be useful to design an approximation algorithm
for TM-MFL. However, we can construct examples that
show that a class of natural local search algorithms that per-
form a bounded number of exchange or switch operations
at each iteration will have an unbounded ratio; note that this
class includes the local search constant approximation algo-
rithm of [1] for k-median. More specifically, we can show
the following. First observe that if we fix the destinations
of the set of facilities then the solution for clients is obvi-
ous (each client must go to the nearest vertex which has a
facility). Now consider any algorithm that, for a bounded
value p, iteratively performs one or both of the following
operations as long as it improves the quality of the solution:

1. select a subset k ≤ p of facilities fi1 , . . . , fik
and a

subset of size k of destinations for them v1, . . . , vk,
respectively; move fij

to vj , for each 1 ≤ j ≤ k.

2. select a subset k ≤ p of facilities fi1 , . . . , fik
and let

v1, . . . , vk be their current location, then find a permu-
tation π : [k]→ [k] and move each fij

to vπ(j), for all
1 ≤ j ≤ k.

Then there are examples for which the algorithm above will
have unbounded approximation ratio, we will give such an
example in Section 4.

The rest of the paper is organized as follows. For ease
of exposition and lack of space, we present a proof for a
slightly weaker version of Theorem 1.1 in the next section
and postpone the proof of the main theorem to full version
of the paper. The proofs of Theorems 1.3 and 1.4 appear in
Section 3.



2 A Randomized 16-Approximation Algo-
rithm

In this section, we present a randomized 16-
approximation algorithm for the minimum total movement
mobile facility location. This algorithm uses randomized
rounding of the optimal fractional solution obtained
from a solving a natural IP/LP formulation. It can be
easily de-randomized using the method of conditional
probablities.

Recall that in TM-MFL, we have a graph G(V, E) with
metric costs dij on the edges, a set of clients C each hav-
ing a demand Di ≥ 1, and a set of facilities F . Note that,
since we do not need more than one facility on any node
in the final configuration, we assume that each node has at
most |V | facilities so |F | ≤ |V |2. Furthermore, we then
assume (after the previous observation) that each facility is
located on a node with no other facilities or clients; this
can be enforced by transforming the general problem of fa-
cilities sharing a node by creating a dummy-node for each
facility and connecting it to the original node with cost 0.
Thus we can assume F ⊆ V . Also, we can assume C ⊆ V
by combining the demands of clients in any node into one
client since clients starting on the same node can be moved
to the same destination in the optimal solution.

2.1 Outline of the Algorithm

Our starting point is an integer programming formulation
of the problem. Define indicator variables xiv for each i ∈
C and v ∈ V , and yjv for each j ∈ F and v ∈ V ; variables
xiv and yjv will be 1 if client i or facility j is moved to
location v, respectively, and 0 otherwise. Then the goal is
to optimize to following program:

minimize :
∑

i∈C

∑

v∈V

xivDidiv +
∑

j∈F

∑

v∈V

yjvdjv

such that :
∑

v∈V

xiv = 1 ∀i ∈ C

∑

v∈V

yjv = 1 ∀j ∈ F

∑

j∈F

yjv ≥ xiv ∀i ∈ C, v ∈ V

xiv ∈ {0, 1} ∀i ∈ C, v ∈ V
yjv ∈ {0, 1} ∀j ∈ F, v ∈ V

The first two constraints ensure that a client or facility
has a unique destination vertex while the third ensures that
any vertex that is the destination of some client is also the
destination of some facility. We say a location v is cov-
ered if there is at least one facility assigned to it (so we can
move any client to be served at v). We obtain a linear pro-
gram (LP) relaxation of this problem by relaxing the last

two constraints to non-negativity constraints xiv ≥ 0 and
yjv ≥ 0. Since the size of this LP is polynomial in the
size of the input we can compute the optimum fractional
solution (x, y) with objective function value OPTf . For
each client i define Ci =

∑

v xivdiv and for each facility
j define F j =

∑

v yjvdjv . Note that Ci and Fj are the
total costs of moving a unit of demand of client i and fa-
cility j, respectively. Denote

∑

i CiDi as C and
∑

j F j

as F ; so C + F = OPTf . Our randomized algorithm
produces an integral solution of (expected) cost at most
16C + 4F ≤ 16 · OPTf .

The algorithm has five phases, starting from the opti-
mal fractional solution (x, y), where each phase brings the
current solution closer to an integer solution while keep-
ing a bound on the cost increases. We begin with a sum-
mary of each phase. Since the values of (x, y) change fre-
quently throughout the algorithm, we adopt the following
notation. For each step p, (x(p), y(p)) will denote the as-
signments of clients and facilities to locations after step p.
Similarly, we will let C

(p)

i and F
(p)

j denote the respective
costs of moving one unit of demand of client i and moving
facility j under the assignment (x(p), y(p)). Finally, we let
C

(p)
=

∑

i C
(p)

i Di and F
(p)

=
∑

j F
(p)

j .
Step 1: Clustering of clients: To start, we will create

a modified instance of the original problem by moving de-
mands between clients and removing clients with zero de-
mand so that different locations with non-zero client de-
mands are far apart. More specifically, for all pairs of clients
i 6= i′ we want to make sure that dii′ > 4 ·max

{

C i, Ci′
}

.
This will be guided by the values of (x, y) so that the cost
of the new instance under the assignments of (x, y) is at
most OPTf and so we can recover an integer solution to
the original problem from an integer solution to the modi-
fied problem by paying only a constant factor of C.

Step 2: Relocation of facilities: The next step is to en-
sure that each location v with x

(2)
iv > 0 for some i ∈ C

is the initial location of some client i′. That is, at the end
of Step 2, x

(2)
iv > 0 implies there is some i′ where client

i′ starts at node v. Based on the previous step of cluster-
ing the demands and on how we perform this step, we will
now be able to say that x

(2)
ii ≥

1
2 , so less than half of each

client i must be served at a location v different from i and
that this location is the location of another client. More-
over, each client has this amount served at the nearest i′ to i
while breaking ties by choosing the client i′ with lowest in-
dex. Let this closest client to i be denoted by φ(i). Finally,
we remove useless facilities so that each location v now has
∑

j y
(2)
jv ≤ 1.

Step 3: Getting a half-integer solution: The third step
is more involved. Here we obtain a half-integer solution
through two sub-processes. The first ensures that for each
location v,

∑

j y
(3)
jv = a

2 for some integer a by redirect-



ing facility assignments using an augmenting path. The
second relies on a matching polytope argument and uses
a minimum weighted perfect matching algorithm (in a bi-
partite graph) to ensure that we can assume each individual
y
(3)
jv ∈

{

0, 1
2 , 1

}

. At this stage, we will have half-integer
values for all of x

(3)
i and y

(3)
j variables.

Step 4: Modifying the half-integer solution: The fi-
nal step of the algorithm has each facility uniformly ran-
domly rounded to one of its at most 2 (fractional) destina-
tions. However, there are some events that we will consider
as “bad”. The purpose of step 4 is to reassign some facility
variables in a way that removes the possiblity of these bad
events while maintaining their half-integrality and incurring
only a constant-factor blowup in their cost.

Step 5: Randomized Rounding As described before,
we randomly round each facility location to one of its at
most 2 (fractional) destination locations with equal proba-
bility. Then we move each client i to φ(i) and from there
to φ(φ(i)) if there is no facility assigned there, and so on,
until the client reaches a covered location.

2.2 Clustering of Clients

This phase is similar to the first step in [6]. Recall that we
start from an optimum LP solution and C i =

∑

v xivdiv .
We modify the instance in such a way that the current frac-
tional solution is also a feasible solution for the new in-
stance, and given an integer solution for the new instance,
we can obtain an integer solution for the original instance
with a bounded increase in the cost. Without loss of gen-
erality, assume that C1 ≤ C2 ≤ · · · ≤ C |C|. We assign
(x(1), y(1)) ← (x, y) and cluster the demands of clients by
the following procedure:

for i = 1 . . . |C| do
if ∃ i′ < i such that Di′ > 0 and dii′ ≤ 4Ci then

Di′ ← Di′ + Di

Di ← 0 (i is no longer a client)

In the following three lemmas we show how to find a
good integer solution of the original instance from a solu-
tion of this new instance. The first lemma describes how to
obtain an integer solution to the original instance from an
integer solution to the new instance with an increase of 4C
in cost. The second lemma expresses the fact that this new
problem does not get worse in its objective function value
under the assignments (x, y). The final lemma states that
any two clients are far from each other; a property that is
used in obtaining an integer solution of the new instance.
The proofs of the first two lemmas are fairly simple and are
omitted, while the third is immediate from the clustering
procedure.

Lemma 2.1. Any integer solution of cost T to the modi-
fied instance can be turned into an integer solution of the
original problem with cost at most T + 4C.

Lemma 2.2. C
(1)
≤ C and F

(1)
= F .

Lemma 2.3. Any two clients i and i′ in the modified in-
stance have dii′ > 4 ·max

{

C
(1)

i , C
(1)

i′

}

.

From now on, we will be dealing with the modified in-
stance of the problem.

2.3 Relocation of Facilities

First, initialize (x(2), y(2)) ← (x(1), y(1)). Now, con-
sider each location v with x

(2)
iv > 0 for some client i (i.e.

there is some client being served fractionally at v) but there
is no client demand located at v. Let i′ ∈ C be any closest
client to this location, i.e. di′v ≤ div for all other clients
i ∈ C. We are going to relocate the clients being served at
v to location i′ and take the facilities that cover v with them.
Let M =

maxi x
(2)
iv

P

j
y
(2)
jv

be the fraction of the facility coverage
at v that is required to cover all clients i being served at v (it
may be that

∑

j y
(2)
jv > x

(2)
iv for all i ∈ C, for example when

djv = 0 for many facilities j but we will remove all such
occurrences after this step). For all clients i and facilities j,
assign: x

(2)
ii′ ← x

(2)
ii′ +x

(2)
iv , x(2)

iv ← 0, y(2)
ji′ ← y

(2)
ji′ +M ·y

(2)
jv ,

and y
(2)
jv ← (1−M) · y

(2)
jv .

Lemma 2.4. C
(2)
≤ 2C

(1) and F
(2)
≤ F

(1)
+ C

(1).
Proof. Consider a vertex v as above where the assignments
at v were moved to a nearest client i′. For each client i the
cost increases by at most Di·x

(1)
iv ·dvi′ ≤ Di·x

(1)
iv ·dvi, where

we use the fact that dvi′ ≤ dvi (by definition of i′). This
fraction of the client’s assignment will not be moved again
since it is moved to a client location. Therefore, summing
over all i and v, it follows that the cost increase for clients
is at most C

(1).
For each vertex v we know there is a client i with x

(1)
iv =

M ·
∑

j y
(1)
jv . The cost increase incurred by moving facility

assignments to v is:

M ·
∑

j∈F

y
(1)
jv (dji′ − djv) ≤ M ·

∑

j∈F

y
(1)
jv di′v

= di′v ·M ·
∑

j∈F

y
(1)
jv = x

(1)
iv · di′v

≤ x
(1)
iv · div ≤ x

(1)
iv · div ·Di,

where the first inequality uses the fact that dji′ ≤ djv +
dvi′ by triangle inequality, and the last one uses the assump-
tion that Di ≥ 1. Notice that when an assignment of a fa-
cility is moved from some v to some i′ then that fraction



of the assignment will never move again in this step. Fur-
thermore, each x

(1)
iv fraction of a client will be used at most

once in bounding the facility cost increase. Therefore, sum-
ming this change in cost over all v shows the cost increase
for both clients and facilities is bounded by C

(1).

Even more can be said about the structure of the current
solution. Using a simple averaging argument we can prove:

Lemma 2.5. For all clients i: x
(2)
ii ≥

1
2 . In other words,

each client has less than half of its assignment being served
at a different location than its own.

Next, for each vertex v with Dv = 0 and each facility j,
if y

(2)
jv > 0 then move this amount back to the location of

j at no additional cost. This can happen if at the beginning
of this phase, M < 1; therefore after relocating the facility
values assigned to vertex v we still have

∑

j y
(2)
jv > 0. Then,

for each client i if
∑

j y
(2)
ji > 1 we can move coverage

from facilities from y
(2)
ji to y

(2)
jj until

∑

j y
(2)
ji = 1 at no

extra cost. Since we assume that each facility starts on a
location with no other facilities or clients then this is always
possible. Thus, in the current solution we have that the only
vertices with non-zero coverage are those that are either a
client or facility location,

∑

j y
(2)
ji ≤ 1 for all locations v

and, for all clients i, x
(2)
ii ≥

1
2 and

∑

i′∈C x
(2)
ii′ = 1. We

can assume that the remaining 1 − x
(2)
ii ≤ 1

2 fraction of
each client i not being served at its own location is being
served at the nearest client. Denote this client as φ(i) while
breaking ties by the lowest index. Also assume that each
client uses the coverage at its own location to the maximum
amount. That is, for each i, we can assume that x

(2)
ii =

∑

j y
(2)
ji by moving

∑

j y
(2)
ji −x

(2)
ii from x

(2)
iφ(i) to x

(2)
ii at no

additional cost.

2.4 Getting a Half-Integer Solution

In this phase our goal is to ensure that the value of each
x

(3)
iv and y

(3)
jv is in {0, 1

2 , 1}. Start with (x(3), y(3)) ←

(x(2), y(2)). We say that a location v is covered half-
integrally if

∑

j y
(3)
jv ∈

{

0, 1
2 , 1

}

. Given the assignment
(x(3), y(3)), we construct a weighted bipartite graph B in
the following manner. For each location v create a vertex
on one side of the bipartition and for each facility j create
a vertex on the other side of the bipartition. We connect v

to j in B with weight y
(3)
jv only if this weight is positive.

The edge weights in any connected component of B must
sum to an integer since the sum of the weights of the edges
incident to any particular facility must be 1. Therefore, if
there is a location v that is not covered half-integrally in the
current assignment (x(3), y(3)), then there must be another

−ε

−ε

j j j j 4

0 4321

1 2 3

v v v v  = v’v  = v

+ε−ε+ε−ε+ε−ε+ε

+ε

(v  )0φ (v  )φ 4

y
(3)
jmvm−1

← y
(3)
jmvm−1

− ε ∀ 1 ≤ m ≤ k

y
(3)
jmvm

← y
(3)
jmvm

+ ε ∀ 1 ≤ m ≤ k

x
(3)
ii ← x

(3)
ii − ε if v is a client i

x
(3)
iφ(i) ← x

(3)
iφ(i) + ε if v is a client i

x
(3)
i′i′ ← x

(3)
i′i′ + ε if v′ is a client i′

x
(3)
i′φ(i′) ← x

(3)
i′φ(i′) − ε if v′ is a client i′

Figure 1. Changing fractional values over
a path between two clients with non-half-
integer coverage.

location v′ in the same connected component as v that is not
covered half-integrally in B.

While there is still a location v that is not covered half-
integrally we execute the following procedure. Find a path
v = v0, j1, v1, j2, v2, . . . , vk−1, jk, vk = v′ in the bipartite
graph B constructed from v (using current (x(3), y(3))) to
some other location v′ that is not covered half-integrally.
Define α0 = diφ(i)Di if v is some client i and otherwise say
α0 = 0. Similarly define αk for v′. These α0, αk quantities
express the cost of serving one unit of demand for the clients
at locations corresponding to v and v′ if there is no facility
coverage at their location.

Let τ be a constant which we will specify after the entire
algorithm is presented. Since we could consider this path in
the reverse order, without loss of generality, assume that:

α0 + τ

k
∑

m=1

djmvm
≤ αk + τ

k
∑

m=1

djmvm−1 (1)

What we plan to do is shift some coverage from v to v′

through this path, by simultaneously increasing each y
(3)
jmvm

and decreasing each y
(3)
jmvm−1

(at the same rate) until one of
the edges in the path has value 0 (i.e. the edge disappears
from B) or one of the endpoints v or v′ is covered half-
integrally. Let ε = min{y

(3)
jm,vm−1

|1 ≤ m ≤ k}. If v is a
client i, then update ε← min{ε, x

(3)
ii −

1
2}. Finally, update

ε ← min{ε, 1 −
∑

j y
(3)
jv′} (this is 1 − x

(3)
i′i′ if v′ is a client

i′). Now, by our construction of B and the assumption that
neither v nor v′ are covered half-integrally, we have ε > 0.
We perform updates to (x(3), y(3)) as in Figure 1.



Since a new edge in B can never be introduced by this
method and all half-integrally covered locations remain so,
then there is a polynomial upper-bound on the number of
times we must perform this re-assignment of facilities. De-
note the difference ε(

∑k

m=1(djmvm
− djmvm−1)) by δ. Af-

ter a step is performed, the total cost of all clients C
(3) is

changed by ε(α0 − αk) which is at most −τδ by (1). Sim-
ilarly, the change in the cost of the facilities is δ. Letting
∆ be the sum of the δ values over all executions of such an
update, we see that C (3)

≤ C
(2)
−τ∆ and F

(3)
= F

(2)
+∆.

The previous process obtains a half-integer solution in
that each location v has

∑

j y
(3)
jv ∈

{

0, 1
2 , 1

}

. However, it
is not necessarily true that each y

(3)
jv is a half-integer. We

rectify this situation with a matching.

Lemma 2.6. If there is an assignment (x, y) such
∑

j yjv is
a half-integer for all locations v, then we can find an assign-
ment (x′, y′) with all y′

jv being half-integer where neither
the client nor the facility costs increase.

Proof. We split all locations v with
∑

j yjv = a(v)
2 into lo-

cations v1, . . . , va(v) (note that a(v) ∈ {0, 1, 2}). Split each
facility j into nodes j1 and j2. Finally, for each original
location v with a(v) > 0 and each original facility j, set
yj1vd

= yj2vd
=

yjv

a(v) for 1 ≤ d ≤ a(v) and keep the orig-
inal distances. Notice that for each new facility, the sum of
fractional values over the edges incident to it is still 1 and
each new location is fractionally covered with value exactly
1. We now have a fractional matching between the 2|F | new
facilities and the 2|F | new locations of cost 2F (since we
doubled the edges). By total-unimodularity of the matching
polytope, we can assume that there is an integral matching
of at most the same cost. We can find such a matching us-
ing a minimum weight perfect matching in bipartite graphs
algorithm (e.g. [20]). Consider the new assignment values
defined by this matching; all yjαvd

’s are either 0 or 1.
Now in the original problem (before splitting) let y′

jv ←
1
2

∑a(v)
d=1(yj1vd

+ yj2vd
) for each location v and facility j.

Since we had an integer matching with the new locations
and facilities, we now have that y′

jv ∈
{

0, 1
2 , 1

}

. Each new
location vd, for all 1 ≤ d ≤ va(v), was covered with weight
1 in the integer matching so each original location v still has
∑

j y′
jv = a(v)

2 . The weights of the assignments in the in-
teger matching were halved to restore the original problem,
so now the current cost of the facilities is at most F . The
client assignments x do not change so the client costs do not
increase.

Applying Lemma 2.6 to (x(3), y(3)), we obtain an as-
signment to x, y variables in which each y

(3)
jv is half-integer,

for all j, v. Since each client i has x
(3)
ii ≥

1
2 and uses its

own coverage to the maximum amount, it follows that each
x

(3)
ii ∈ {

1
2 , 1} and if x

(3)
ii = 1

2 then x
(3)
iφ(i) = 1

2 .

2.5 Modifying the Half-Integer Solution

We construct an auxiliary directed graph H which has
a vertex vi for each client i and a directed edge from vi to
vφ(i) with weight diφ(i). So each vertex in H has outdegree
exactly one and by the definition of φ, the edge weights
are non-increasing in any walk on H , which means any
directed cycle of H must have all edge weights being the
same. Moreover, since φ(i) was defined by breaking ties
with lower-indexed clients then all cycles in H have length
2. So, H can be viewed as a collection of connected com-
ponents each of which is a unicyclic graph consisting of a
directed tree with a 2-cycle at the root and all other edges
being oriented toward the root.

We define two types of bad clients. Call each client i a
type 1 bad client if x

(3)
ii = 1 and for two distinct facilities j

and j′, y
(3)
ji = y

(3)
j′i = 1

2 . Also, a pair of clients i and i′ are
called type 2 if φ(i) = i′, φ(i′) = i and x

(3)
ii = x

(3)
i′i′ = 1

2 but
two different facilities j and j ′ are such that y

(3)
ji = y

(3)
j′i′ =

1
2 . The remaining locations are good ones. Recall that the
final step of the algorithm will round each facility j to lo-
cation v with probability y

(4)
jv . With this in consideration,

we see that type 1 clients are those where C
(3)

i = 0 but i
might not receive a facility after the randomized rounding
of facilities (and so has to be served at the nearest loca-
tion with a facility), thus incurring a positive cost increase.
We make a modification to the half-integer solution such
that this does not happen in the next step. We will bound
the expected cost of each client by considering the expected
distance a client i has to move along the sequence of loca-
tions φ(0)(i), φ(1)(i), φ(2)(i) . . . until it reaches a location
that received a facility. Here we define φ(k)(i) recursively
as φ(0)(i) = i and φ(k+1)(i) = φ(φ(k)(i)). The problem
with type 2 clients is that they will never reach a location
with a facility if both of their half-covering facilities are as-
signed elsewhere in the randomized rounding phase. If all
2-cycles are guaranteed to receive a facility in the random
rounding, then all clients will eventually be covered by it-
eratively following φ(l)(i) to φ(l+1)(i) since this sequence
eventually reaches the 2-cycle root in H .

We now turn our attention to fixing type 1 and type 2
clients. Begin by setting (x(4), y(4)) ← (x(3), y(3)). Con-
sider any type 1 client i or type 2 client pairs i and i′ with
contributing facilities j and j ′. We will build a sequence of
locations and facilities starting with j. Now, j must be con-
tributing to another location v since it was only contributing
1
2 to i. If there is a type 1 client i′, then continue construct-
ing this sequence with i′ followed by the other facility j ′′

contributing to i′. If there is a type 2 client i′, then con-
tinue constructing this sequence with i′ being followed by
φ(i′) and then by the facility j ′′ contributing to φ(i′). Con-
tinue to extend the sequence in this way until a location is
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Figure 2. A sequence of bad clients before
(a) and after (b) applying the fixing operation.
Each edge represents an assignment of frac-
tional value 1

2

reached that is good or until the location of the original type
1 client i is reached. In the former of these two cases, extend
the same path from facility j ′ contributing to the original i.
This process forms a sequence consisting only of clients of
type 1 or 2 (except, perhaps, the endpoints, if we do not get
a cycle) and the facilities which contribute to them. If we
do this for every type 1 or 2 client, we get a collection of
sequences of which each facility j and location v are adja-
cent in at most one of them (so that each y

(4)
jv is represented

at most once). We will deal with each of these sequences
individually.

Say v0, j1, v
′
1, v1, j2, v

′
2, v2, . . . , v

′
m−1, vm−1, jm, v′m is

such a sequence where, for 0 < i < m, if vi is a type 1
client we assume vi = v′i. Finally, if v0 is of type 1 then
we have v0 = v′m and if v0 is of type 2 then φ(v0) = v′m.
Since we could consider this sequence in the reverse order,
without loss of generality, we can assume that:

m−1
∑

i=1

(

2djiv
′

i
+ djivi−1

)

≤
m−1
∑

i=1

(

djiv
′

i
+ 2djivi−1

)

(2)

Perform the following sequence of updates to fix the type
1 and 2 locations in this sequence (say vm = v0): y

(4)
jivi−1

←

0 for 1 ≤ i ≤ m, and y
(4)
jivi
← y

(4)
jivi

+ 1
2 , for 1 ≤ i ≤ m.

Note that by rule 2 above, if v′
i = vi (i.e. it is a type 1 client)

then we are essentially setting y
(4)
jivi
← 1 and if v′

i 6= vi we
will have y

(4)
jiv

′

i

= y
(4)
jivi

= 1
2 (see Figure 2 for an example).

There are no more type 1 or type 2 clients remaining left
after this update is performed for all of the sequences. It
is easy to see that we do not have to change x(4) values,
therefore since only y(4) variables are changed, we have

C
(4)

= C
(3). We can also bound the cost of F

(4)

Lemma 2.7. F
(4)
≤ 4F

(3).

2.6 Randomized Rounding

As mentioned before, our final step is to round each fa-
cility j to a location v with probability y

(4)
jv . Since for each

facility j,
∑

v y
(4)
jv = 1, the expected cost of the facilities

after rounding is exactly F
(4). Naturally, for each client

that does not have a facility at its location we send it to the
nearest location with a facility after this step is performed.
We bound the cost increase due to moving clients in the fol-
lowing lemma whose proof is ommitted.

Lemma 2.8. The expected cost of the client assignments
after the randomized rounding of y(4) is at most 4C

(4).

2.7 Putting it all Together

Working with the modified instance, we have the
client/facility costs initially being at most (C, F ). After
the second step, the new client/facility costs are bounded
by (2C, F + C). When obtaining the half-integer solution,
the costs increase to at most (2C − τ∆, F + C + ∆) for
some constant τ which we will specify shortly. Fixing type
1 and type 2 clients resulted in the cost of the current so-
lution rising to at most (2C − τ∆, 4F + 4C + 4∆). Fi-
nally, the random rounding produced an integer solution
to the modified instance with an expected cost of at most
(8C − 4τ∆, 4F + 4C + 4∆).

However, as detailed in the clustering step, we have to
move the demands back to their original locations which
is done with a penalty of 4C. Thus, the final cost of the
algorithm is 16C +4F +4(1−τ)∆. Choosing the constant
τ to be 1 when obtaining the half-integer solution, we see
the overall cost of the final integer solution to the original
problem being bounded by 16C + 4F ≤ 16 · OPTf .

3 Hardness Result

In this section we prove Theorems 1.3 and 1.4.
Proof of Theorem 1.3:. Suppose we are given an instance
of k-median on a graph G(V, E) with metric edge weights
dij and demand Dv for each vertex, and integer k. First,
using scaling, we assume that the minimum edge length in
G is at least 1 and the minimum demand Dv is at least 1. We
construct an instance of the mobile facility location problem
as follows. Let ∆ denote the maximum distances of this
metric and define σ = αnk∆, with n = |V |. We use the
same graph G and place k facilities in arbitrary nodes of
G and let each v ∈ V be a client with demand σDv ≥



1. Consider any optimum solution of the instance of TM-
MFL with cost C + F , where C denotes the cost of moving
clients and F denotes the cost of moving facilities, and any
optimum solution with cost C∗ to the k-median instance.

We claim that C + F ≤ σC∗ + σ
αn

. To see this, take the
optimum solution of the k-median. Moving the demands
in TM-MFL as in this solution of k-median costs exactly
σC∗. To bring facilities to these k locations costs at most
k∆ = σ

αn
. Thus we have:

C + F

σ
≤ C∗ +

1

αn
≤ C∗

(

1 +
1

αn

)

, (3)

since C∗ ≥ 1.
Now suppose there is an α-approximation algorithm for

TM-MFL and it returns a solution with cost C ′+F ′. Obtain
a solution to the k-median based on this approximate solu-
tion by moving the demands as in the TM-MFL solution,
and let C ′′ be its cost. Using (3): C ′′ = C′

σ
≤ (C′+F ′)

σ
≤

α(C+F )
σ

≤ C∗α
(

1 + 1
αn

)

. Thus C ′′ is within ratio α + 1
n

of the optimum, i.e. we have an (α + o(1))-approximation
for k-median. �

Proof of Theorem 1.4:. NP-completeness of the classic
vertex cover problem, proven by Karp [17], is all that is re-
quired for this result. Given a graph G(V, E) and an integer
k, we construct an instance of minimum maximum move-
ment facility location on a new graph H as follows. Let the
vertex set of H be V ∪E ∪ {f1, . . . , fk} where each fi is a
new node. Add an edge from every fi to every vertex in V
with cost 1 and place a facility in each fi. For each v ∈ V
and e ∈ E, if v is an endpoint of e in the original graph
G then connect v and e in H with an edge having cost 1.
Finally, the set of all clients in this new graph is exactly E.
It is straightforward to verify that G has a vertex cover of
size at most k if and only if H has a solution with maximum
movement 1. Consequently, any (2− ε)-approximation al-
gorithm, for any ε > 0, will return a solution of cost less
than 2 if G has a vertex cover of size k. Conversely, if G
does not have a vertex cover of size k then any algorithm
must return a solution of cost 2 in H . �

4 Concluding Remarks

One natural question is whether we can obtain an ap-
proximation algorithm with ratio better than 8 for TM-MFL.
Since this generalizes the classical k-median problem, im-
proving this ratio beyond 3 would imply an approximation
algorithm that is better than the currently best known ap-
proximation algorithm for k-median.

One direction would be to try local search. As mentioned
in the Remark after Theorem 1.1, we can exhibit, for any
large enough positive integer F , an instance of TM-MFL

with locality gap at least F/(p + 2) with respect to the two
operations defined there, which involves operations involv-
ing up to p facilities or locations. To that end, consider a
cycle on F + p + 1 vertices where all edges have cost 1.
Let v1, . . . , vF+p+1 be the label of the vertices in counter-
clockwise order. On vertices vi, i = 2 . . . F − p, place a
client with demand 2i and a single facility. On the 2p + 1
vertices following vertex F −p, alternate between placing a
client with demand that is 2 more than the previously placed
client and placing a facility. Finally, place a single facility
on vertex v1. Consider the solution to TM-MFL on this
instance where each facility moves counter-clockwise one
step. All clients are covered and the total cost of this so-
lution is F . One possible way to get to this configuration
starting from the initial configuration is by first moving the
facility on vertex F + p to location F + p+1 (since this re-
duces the cost of serving the 2(F + 1) facilities there), then
moving the facility on vertex F +p−2 to location F +p−1,
and so on. In other words, every facility (starting from the
one at location F + p down to the one at location 1) moves
one step counter-clockwise to the nearest location that has
clients on it. Each of these moves reduces the total cost. The
claim is that this solution is a local minimum with respect
to the local search operations detailed above. First, since all
clients have some facility at their start location and each fa-
cility moves only one step, moving any facility from a node
with a client to a node without a client will only increase
the overall cost. Second, it’s not hard to see that permuting
the destinations of any k ≤ p facilities will not improve the
cost. In contrast, a solution of cost p + 2 is obtained by
moving all facilities that do not start at a client location to
the nearest client in the clockwise direction. Therefore, the
ratio gap is at least F/(p + 2).

Another direction of research is to consider more gen-
eral versions of TM-MFL. A natural one is when there is
a weight wj associated with each facility j and the cost of
moving this facility to location i is now wjdij . Our ap-
proximation algorithm as it is does not extend to work for
this more general setting. An even more general setting is
when wj (for facility j) is a concave monoton function and
wj(i) is the cost of moving facility j one unit of distance if
the number of demands it services at the end is i. However,
these more general models seem much more difficult to deal
with and getting a constant approximation for any of these
seems to require substantially new ideas.

As mentioned in [8], many classical optimization prob-
lems can be defined in this movement setting which are both
theoretically interesting and have applications in real world.
So far there are only a few problems considered in [8] and
this paper.
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[21] D. Shmoys, É. Tardos, and K. Aardal, Approximation
algorithms for facility location problems, in Proc. of
the 29th annual ACM Symp. on Theory of Computing
(STOC), 1997, pp. 265–274.

[22] M. Sviridenko, An improved approximation algorithm
for the metric uncapacitated facility location prob-
lem, in Proc. of 9th Inter. Conf. on Integer Program-
ming and Combinatoril Optimization (IPCO) 2002,
pp. 240–257.


