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22.1 Preliminaries

We continue our proof of the PCP Theorem.

Recall, between Lectures 21 and 22, these notes begin with a slight recap of what we discussed at the end of
lecture 20 and contain a bit of the discussion at the start of lecture 23. They also contain more detail than
what was discussed in the lectures and they lift the assumption that the expanders are loopless. I wanted a
comprehensive writeup you could use as reference if you wanted to verify the details (and it was good for me to
be reminded of some details too).

22.2 Gap Amplification, Continued

Refer to the notes in Lecture 21 for notation. We already described the gap amplification construction and are
now analyzing why sat(φ′) is at most 1− 4 · ε for appropriate settings of constants.

22.2.1 Analysis

Recall we are saying sat(φ) = 1− ε.

Let σ : V → [W ]d
t+1

be an optimal assignment for φ′. For each u ∈ V , we determine an assignment σ(u) ∈ [W ]
for u as follows:

• Perform Lazy Random Walk 2 starting from u. If it ends at a vertex a that has an opinion for u,
output a’s opinion for u from σ(a). Otherwise, output None.

• Let σ(u) be the most likely opinion for u (apart from None) that is output by this procedure. Break ties
arbitrarily.

Claim 1 Performing Lazy Random Walk 2 from u ends at a vertex a having an opinion for u that matches
σ(u) with probability ≥ 1

2W

Proof. The probability that Lazy Random Walk 2 takes more than t steps is (1− 1/t)t+1 ≤ 1/e ≤ 1/2. So
with probability at least 1/2, it ends at a vertex having an opinion for v.

Conditioning on the event it ends at a vertex having an opinion for u, the probability this opinion is σ(u) is at
least 1

W because we took the most popular opinion for u.

Thus, with probability at least 1
2W , this walk ends at a vertex having opinion σ(u) for u.
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Now, σ leaves at least an ε-fraction of clauses of φ unsatisfied because sat(φ) = 1 − ε. Let F ⊆ E be any
particular set of ε · |E| constraints that are not satisfied by σ.

Let us analyze the probability that the sampled constraint is not satisfied by σ. Say a and b are the start and
end vertices of the random walk used to sample the constraint. For sure, the constraint will not be satisfied if
the walk took a step u→ v with uv ∈ F where:

• a has an opinion for u (i.e. the shortest a− u path in G has length ≤ t),

• b has an opinion for v, and

• a’s opinion for u in σ(a) equals σ(u), and b’s opinion for v in σ(b) equals σ(v).

Say such step is faulty. Let NF be the random variable denote the number of steps of the constraint that are
faulty. If NF > 0, then the sampled constraint is not satisfied.

Main Goal: We will show Pr[NF > 0] = Ω(t) · ε where the Ω term suppresses constants depending on W and
(d′, λ′) (the expansion of the constraint graph). We then set t appropriately so this is at least 6 · ε (unless ε is
at least some constant already, as we will see).

22.2.2 The Second Moment Method

Our goal is to show Pr[NF > 0] is large enough. The following gives a tool to do that. Intuitively, if we want
a random variable to be positive, then having a high expected value would suffice unless the random variable
is often zero and is only nonzero with a small probability (but on very large values). Being nonzero with very
small probability but taking very high values in this case indicates the variance is very high.

So if the random variable has a high expected value but controlled second moment, then we have a good bound
on the probability of it being nonzero.

Lemma 1 Let X be a nonnegative random variable zero with 0 < E[X2] <∞. Then Pr[X > 0] ≥ E[X]2

E[X2] .

Proof.
Quick Reminder: The set of all real-valued random variables Y with bounded second moments E[Y 2] in a
probability space is a vector space over R. Further, 〈Y, Z〉 = E[Y · Z] is an inner product in this space. So the
Cauchy-Schwartz inequality applies: the proof we saw in Lecture 19 extends immediately to this case.

Let Z be the random variable that is 0 in any event X is zero and is 1 in any event where X > 0. Then:

E[X]2 = E[X · Z] = 〈X,Y 〉2 ≤ ||X||22 · ||Y ||22 = E[X2] ·Pr[X > 0].

22.2.3 Bounding E[NF ]

Lemma 2 If G has no loops, E[NF ] ≥ t
4W 2 · ε.

Proof. Fix a particular edge uv ∈ F and direction u → v of that edge. Consider the random walk a =
v0, v1, . . . , vk = b when sampling a constraint. Let Bu,v be the event that a’s opinion for u is σ(u) and b’s
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opinion for v is σ(v): the event Bu,v does not happen if either a or b does not have an opinion for u or v,
respectively.

Let Y ku,v be the event that the step u → v is taken exactly k times (the other direction v → u can be taken
any number of times). By Lemma 6 from Lecture 21, the endpoints a, b from the Lazy Random Walk 1
distribution conditioned on the event Y ku,v are distributed independently and are distributed as though they

were obtained by Lazy Random Walk 2 starting from u, v respectively. So by Claim 1, Pr[Bu,v|Y ku,v] ≥ 1
4W 2 .

Let Nu,v denote the number of times the step u→ v is taken if Bu,v happens, otherwise let it be 0. Then,

E[Nu,v] =
∑
k≥1

k ·Pr[Bu,v ∧ Y ku,v]

=
∑
k≥1

k ·Pr[Bu,v|Y ku,v] ·Pr[Y ku,v]

≥
∑
k≥1

k

4W 2
·Pr[Y ku,v]

=
1

4W 2
·E[#u→ v steps].

To compute the expected number of u → v steps, observe for each i ≥ 0 that conditioned on the (i + 1)’st
step occurring, the step vi → vi+1 is as if it was sampled uniformly at random among all possible edges and all
possible directions of this edge. This is because each vj is uniformly distributed (the random walk v0, v1, . . . , vi
starts from the uniform distribution and G is regular).

The probability that the (i+ 1)’st step occurs is also (1− 1/t)i. So the probability that vi → vi+1 is even taken
and is equal to u→ v is (1− 1/t)i/(2|E|).

Therefore, continuing from above we have

E[Nu,v] ≥
1

4W 2

∞∑
i=0

(
1− 1

t

)i
· 1

2|E|
=

1

4W 2
· 1

2|E|

∞∑
i=0

(1− 1/t)i =
t

4W 2
· 1

2|E|
.

Finally, NF =
∑
uv∈F Nu,v +Nv,u so

E[NF ] =
∑
uv∈F

E[Nu,v] + E[Nv,u] ≥ t

4W 2
· 2|F |

2|E|
=

t

4W 2
· ε.

With Loops
Now we consider the possibility of G having loops. We still have that vi is sampled from the uniform distribution
(if we condition the random walk on reaching step i), this holds even in the presence of loops. So step vivi+1

is a step across some edge in F in some direction with probability at least 1/2|E| (rather than exactly this
amount), given that step i+ 1 was taken at all.

The only other adjustment is that NF is the sum of at least |F | (rather than exactly 2|F |) terms of the form
Nu,v because u → v and v → u are identical steps if uv is a loop. That is, recall in the adjacency matrix of a
graph with loops that each loop contributed only 1 to the diagonal entry: we think of a loop as only having 1
endpoint.

Lemma 3 E[NF ] ≥ t
8W 2 · ε, even if G has loops.
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22.2.4 Bounding E[N2
F ]

Recall that the constraint graph G of φ is an (n, d′, λ′)-expander.

Lemma 4 If G has no loops, E[N2
F ] ≤ 2 · (C ′+ t · ε) · (t · ε) where C ′ is a constant depending only on d′ and λ′.

Proof. For every i ≥ 0, let χi be the {0, 1}-indicator for the event that step vivi+1 was taken and that it used
an edge in F . Clearly NF ≤

∑
i≥0 χi always holds, so we proceed as follows.

E[N2
F ] ≤

∑
i,j

E[χi · χj ]

≤ 2 ·
∑

0≤i≤j

E[χi · χj ]

= 2 ·
∞∑
i=0

Pr[χi = 1] ·
∑
`≥0

Pr[χi+` = 1|χi = 1]

We bound the inner term Pr[χi+` = 1|χi = 1]. Consider Lazy Random Walk 1 conditioned on the event that
step vivi+1 is taken and used F . Now, vi is distributed uniformly in this distribution so step vivi+1 is uniformly
distributed among all edges in F and their two directions. That is, the random walk starting from vi+1 is like
we chose vi+1 by uniformly choosing an edge in F and then randomly picking one of its endpoints to be vi+1.

The assignment has you analyze such a random walk. It asks you to show that if you start a random walk
v′0, v

′
1, . . . by first randomly picking F and a random endpoint of it, and then proceeding to perform a normal

random walk after that, the probability that step v′`v
′
`+1 crosses an edge in F is at most |F ||E| + λ′`.

Interpreting this in our setting, this means for each ` ≥ 0

Pr[χi+`|χi = 1] ≤
(

1− 1

t

)`( |F |
|E|

+ λ′`
)

=

(
1− 1

t

)`
(ε+ λ′`)

where we recall the (1−1/t)` term comes from the fact that Lazy Random Walk 1 stops after each step with
probability 1/t. So

∑
`≥0

Pr[χi+` = 1|χi = 1] =
∑
`≥0

(
1− 1

t

)`( |F |
|E|

+ λ′`
)

= C ′ + ε
∑
`≥0

(1− 1/t)` = C ′ + t · ε

where C ′ depends only on d′, λ′.

Overall, we can continue our bound

E[N2
F ] ≤ 2(C ′ + t · ε)

∞∑
i=0

Pr[χi = 1] = 2(C ′ + t · ε)
∞∑
i=0

(1− 1/t)i · ε = 2(C ′ + t · ε) · (t · ε).

With Loops
Now, if G has loops we again need a small revision. Conditioning on χi = 1 does not mean step vivi+1 is
sampled by taking a random edge in F and picking a random endpoint. It is true that, before conditioning, vi
is a uniform vertex (given that it the walk reached step i). Say F has k1 loops and k2 nonloops.
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Conditioning only on taking step i, the edge vivi+1 is obtained by sampling a random vertex and a random
incident edge. So the probability F is taken is k1+2k2

|E| . Think of starting a random walk in G as follows: among

all k1 + 2k2 endpoints of edges in F (counting the same vertex multiple times if it is the endpoint of multiple
edges in F ), pick one randomly. Then continue a normal random walk from this vertex. The brownie points
version of the assignment question asks you to prove that step v`v`+1 crosses an edge in F with probability at

most |F ||E| ≤ 4 · λ′`.

The other part of the proof that needs to be modified is Pr[χi = 1] is not exactly (1 − 1/t)i · ε, but is instead
at most 2 · (1− 1/t)i · ε for similar reasons. But all of this slight loss can be absorbed in the constant.

Lemma 5 E[N2
F ] ≤ 2 · (C+ t · ε) · (t · ε) where C is a constant depending only on d′ and λ′, even if G has loops.

22.2.5 Finishing the Bound

Recall Pr[NF ] is a lower bound on the total weight/probability of constraints of φ′ that are not satisfied by
σ. That is, sat(φ′) ≤ 1 − Pr[NF > 0]. From Lemmas 3 and 5 and the second moment method Lemma 1, we
immediately conclude

Corollary 1 Pr[NF > 0] ≥
(

t2

64W 4 ε
2
)
/ (2(C + t · ε) · (t · ε)) = β·t·ε

2(C+tε) where β depends only on W .

In general, the best we can say is ε ≤ 1 which lower-bounds this probability by β′ · ε for some constant β′

depending on W,d, λ′. In other words, if the unsatisfiability of φ was low enough (i.e. if ε is big enough) then
we don’t seem to get any controllable improvement.

But, if ε ≤ 1/t then in fact we can say Pr[NF > 0] ≥ β′′ · t · ε where β′′ depends on W,D and λ′ but not t. So
we are free to set t to be any constant.

Choice of t: Set t := d4/β′′e.

So if ε ≤ t then sat(φ′) ≤ 1 − 4ε. If ε > t, we can still say sat(φ′) ≤ 1 − β′/t. Set ε′ := β′/t > 0, the
constant mentioned in the Output specification of the start of this Gap Amplification. Again, ε′ depends only
on W,d′, λ′ yields

Corollary 2 sat(φ′) ≤ 1−min{4ε, ε′}.

22.2.6 Truncating the Walk

The last thing that must be done is truncating the random walk so it generates only O(n) constraints. With
foresight, set τ to be minimum such that (1− 1/t)τ · (τ + t) · 2 ≤ 1

16W 2 . The value τ = d10 · t · log2W e suffices,
just remember (1− 1/t)t ≤ e−1 when you verify this.

Constraints - Real Version

Perform Lazy Random Walk 1 except force it to stop if it takes more than τ steps. Let a = v0, v1, . . . , vk = b
be the walk and note k ≤ τ . Add an a− b edge/constraint to φ′.

If the random walk stopped within τ steps, the constraint is the same as before: it is satisfied if and only if for
every step vivi+1 for which a has an opinion for vi and b has an opinion for vi+1, the vivi+1 constraint in φ is
satisfied by this opinion.
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If the random walk did not stop within τ steps and we had to truncate it, this new constraint is always satisfied.

CL-Reduction
Note, for each u there are at most d′τ +

∑τ
i=0 d

′i constraints generated with u as the start vertex. The first
term is for the truncated constraints and the rest are for the normal constraints. Also, if φ is satisfiable then φ′

is as well for the same reason: if σ : V → [W ] satisfies φ then choose σ : V → [W ]d
′t+1

just like before. That is,
σ(u) should set u’s opinion for v to σ(v) for every v that is within distance at most t from u. So this is now a
CL-reduction.

We just have to analyze sat(φ′) for this new instance. Let N ′F be the random variable that is 0 if the random
walk went too long, otherwise it agrees with NF . Note N ′F ≤ NF so we can bound E[N ′2F ] by the same bound1

that we used for E[N2
F ]. We want to show for this choice of τ that E[N ′F ] ≥ E[NF ]/2.

We measure the expected difference of NF and N ′F . Let χi be the {0, 1} random variable that indicates if vivi+1

occurred and used an edge in F . We already discussed how Pr[χi = 1] ≤ (1 − 1/t)i · 2ε (it would be exactly
(1− 1/t)i · ε if G had no loops). Observe,

E[
∑
i

χi| ≥ τ + 1 steps taken] ≤ 2ε · τ +
∑
`≥0

Pr[χ`] ≤ 2ε(τ + t).

Thus,

E[NF −N ′F ] ≤ Pr[≥ τ + 1 steps taken] ·E[# steps in F | ≥ τ + 1 steps taken]

≤ (1− 1/t)τ · (τ + t) · 2ε

≤ 1

16W 2
· ε

≤ E[NF ]

2

The last bound holds by Lemma 5. Therefore, E[N ′F ] ≥ E[NF ]
2 ≥ 1

16W 2 · ε.

The rest of the proof proceeds as before, with perhaps very minor adjustments made to the choice of t and the
final constant ε′ > 0.

22.2.7 Making φ′ Unweighted

The reduction created a weighted CSP instance φ′ where sat(φ′) ≤ 1−min{6ε, ε′} meant the maximum weight
of clauses that can be satisfied is at most the stated term.

Observe the probability any clauses is sampled is an integer multiple of
(

1
d′·t
)τ

where t, τ are constants that
depend only on d′, λ′ and W . That is, the random walk would take up to τ steps, each step would first pick a
random neighbour of the vertex (with probability 1/d each) and then flip a coin with bias 1/t to see if it should
stop. So if pe denotes the probability a particular clause/edge e is sampled from the random walk creation, then
(d′ · t)τ · pe is an integer.

Replace each such clause e with (d′ · t)τ ·pe copies of itself to get an unweighted CSP instance that is only bigger
than φ′ by a (d′ · t)τ = O(1) factor. This is our final unweighted CSP from the gap amplification step.

1Technically, to do this we should finish the normal random walk without truncating, but output the trivially-satisfied constraint
connecting v0 to vτ if the walk went too long. Then NF remains defined as before.
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22.3 Alphabet Reduction

Input: A 2CSPD instance φ′. Say sat(φ′) = 1− ε′.
Output: A q0CSP2 instance φ′′ where sat(φ′′) ≤ 1− ε′/3.

We assume D = 2k for some integer k. We can do this by “padding”: adding extra items to the alphabet such
that no clause of φ′ is satisfied by any assignment that uses one of these new terms. This does not change
sat(φ′). In fact, we now view the alphabet for φ′ as {0, 1}k.

Thankfully this is very easy compared to the last section. That is, we have already done most of the work in a
previous lecture. The idea is that we will turn each constraint into a circuit and use the PCP verifier from an
earlier lecture to check that a setting of the values to the wires of the circuit. The PCP we use is the one that
used exponential-size proofs. However, here “exponential-size” will be still be a constant because the alphabet
size of φ′, namely D, is a constant itself. This PCP will still query O(1) bits of the proof where the O(1) does
not depend on D: it is a fresh constant.

22.3.1 Constraints as Circuits

Consider a constraint/edge e in φ′ and say it depends on variables u, v. View the constraint as a circuit Ce
taking in 2k inputs, one for the encoding of a value for u and one for the encoding of a value for v. Say Ce has
`e wires including the output wire apart from the 2k input wires, we can take ` to be bounded by O(22k) (the
O() hiding an absolute constant independent of k).

Note, it could be that some constraints e of φ′ are “loops” meaning they depend only on one variable. In such a
case, still consider the circuit Ce to have 2k inputs and additionally require (via gates in the circuit) that both
groups of k inputs encode the same value. value.

Observe: We can now write a system of strictly quadratic constraints whose variables are all 2k + `e wires of
Ce such that all constraints are satisfied by an assignment if and only if the values on all wires are consistent
(i.e. each non-input wire is correct as a function of the wires entering the corresponding gate) and the output
wire is 1. Compactly write this system as Ae · (x⊗ x) = be where x is a vector of 2k + `e variables over {0, 1}
integers mod 2. We already did this earlier in the course. Technically we reduced from SAT, but the exact same
idea works when we start from circuits with the observation that we can get away with using exactly as many
variables as we have wires.

22.3.2 Variables of φ′′

Recall for x ∈ {0, 1}s for some s that WHx : {0, 1}s → {0, 1} is the function mapping WHx(y) = x ◦ y where we
take x ◦ y =

∑s
i=1 xi · yi (mod 2).

The variables of φ′′ come in three categories:

• For each variable v of φ′, we have 2k variables giving the truth table of some function fv : {0, 1}k → {0, 1}.
The intent is that fv should be WHa for some a ∈ {0, 1}k (i.e. the Walsh-Hadamard encoding of a value v
should take in φ′).

• For each constraint e of φ′ depending on, say, variables u, v we have 22k+`e variables giving the truth table
of some function ge : {0, 1}2k+`e → {0, 1}. The intent is that ge should be the Walsh-Hadamard encoding
of a satisfying assignment y ∈ {0, 1}2k+`e to the wires of the circuit Ce.
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By satisfying, we mean the value assigned to each wire by y is correct (as a function of the wires entering
the corresponding gate) and the output wire for Ce is 1.

• Again for each constraint e of φ′ depending on variables u, v, we have a further 2(2k+`e)
2

variables giving
the truth table of some function he : {0, 1}(2k+`2)2 → {0, 1}. The intent is that he is the Walsh-Hadamard
encoding of y ⊗ y where ge encodes WHy.

22.3.3 Constraints of φ′′

For each constraint e = uv of φ, we will verify that fu, fv, ge, he are “correct” in the following way. Every O(1)
term below does not depend on k, it is a fresh constant.

• Run the linearity test from Lecture 15.3.3 on each of fu, fv, ge, and he Θ(1) times so that if any of them
is not 0.999-close to being linear, then it is rejected with probability at least 1/2.

Recall from Lecture 15 that if a function Θ(1) rounds of the linearity test then it is 0.999-close to the
function HWa: here Θ(1) is an appropriately large constant. In fact, we have not yet seen a proof of this
but it will come next lecture.

From now on, we suppose fu, fv, ge, he are 0.999-close to the WH-encodings of a, b, y, y′, respectively, where
a, b ∈ {0, 1}k, y ∈ {0, 1}2k+`2 and y′ ∈ {0, 1}(2k+`e)2 .

• Perform the concatentation test (see below) with fu, fv, ge to check that the first k bits of y equal a
and the second k bits of y equal b. This is to ensure the input to the circuit Ce is in fact given by the
values of u and v.

• Using local decoding on ge, he, perform the test from Lecture 15.3.2 Θ(1) times to check that y′ encodes
y⊗ y. This was described in Lecture 15 and we prove that if y′ 6= y⊗ y, then Θ(1) repetitions of this test
rejects with probability ≥ 1/2.

• Using local decoding on he, perform the test from Lecture 15.3.1 Θ(1) times to check that y ⊗ y indeed
satisfies Ae · (y ⊗ y) = be. This was also described in Lecture 15 and we proved that if y′ = y ⊗ y yet
Ae · (y ⊗ y) 6= be, then this test fails with probability ≥ 1/2.

Summary: Intuitively, the first test checks that the functions are WH encodings of particular assignments. The
second test ensures the input wires to the circuit take the same values as the variables u, v themselves (i.e. the
input to the circuit is given by the values of variables u, v). The third and fourth test then ultimately check
that the values assigned to the wires of the circuit indeed satisfy the circuit.

22.3.4 Concatenation Test

Input: Functions fu, fv, ge on k, k and 2k+`e bits, respectively, such that each is 0.999 close to a linear function.

Perform the following twice.

• Sample x, x′ ∼ {0, 1}k uniformly and independently.

• Construct vector z of length 2k + `e by setting the first k bits to x, the second k bits to x′, and the
remaining `e bits to 0.

• Sample ζ, ζ ′ ∼ {0, 1}k and ξ ∼ {0, 1}2k+`e uniformly and independently.
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• Reject if
fu(x+ ζ) + fu(ζ) + fv(x

′ + ζ ′) + fv(ζ
′) 6= ge(z + ξ) + ge(ξ).

Say that fu, fv and ge are 0.999-close to a, b, y, respectively. If the first 2k bits of y do not equal the concatenation
of a and b, then by the random subsum principle (Lemma 2 from Lecture 15), (a ◦ x) + (b ◦ x′) 6= (y ◦ z) with
probability 1/2 over the choice of x, x′, z. Further, the probability over ζ, ζ ′, ξ that any of the 6 queries to fu, fv
or ge in the last step above does not give the correct value from the WH-encoding of the corresponding function
is at most 6 · 0.001 = 0.006 (union bound over a single query failing).

So if the first 2k bits of y are not the concatenation of a and b then the probability a single iteration does not
reject is at most 0.5006. Iterating this twice brings the probability to < 1/2. Formally,

Lemma 6 If fu, fv and ge are 0.999-close to linear functions encoding a, b, y, respectively, but the first 2k bits
of y is not equal to the concatenation of a, b, then the above test rejects with probability ≥ 1/2.

22.3.5 Finishing the Constraints of φ′′

For each constraint e = uv of φ′, consider running the four tests from 22.3.3 in parallel. To generate all of these
tests, we flipped re = poly(k, `e) = O(1) coins. Each test also depended on O(1) variables of φ′′, i.e. each test
queried the functions fu, fv, ge, he O(1) times. Let q0 = O(1) be an upper bound on the number of distinct
queries performed in a single test (some tests query the same bit more than once).

For each of the 2re possible ways to flip the coins, generate a constraint for φ′′ that depends on ≤ q0 variables
of φ′′ as follows. The constraint is satisfied by an assignment to these bits if and only if the corresponding tests
passed.

It is clear that if φ′ is satisfiable, then so to is φ′′. That is, simply let all fv be the WH encodings of a satisfying
assignment for φ′, let all ge be the WH encodings of ways to satisfy the corresponding circuit Ce, and let he be
all the WH encodings of the ⊗-product of these corresponding assignments. All tests pass with probability 1, so
all constraints are satisfied.

Thus, φ′′ is a q0CSP2 instance whose size is only a constant-factor larger than the size of φ′. This is because
each constraint e = uv of φ′ has 2re corresponding constraints in φ′′. So this is a CL-reduction.

22.3.6 Soundness Analysis

Lemma 7 Say sat = 1− ε, then sat(φ′′) ≤ 1− ε/2.

Proof. Consider any functions {fv}v∈V and {ge, he}e∈E . We get an assignment σ : V → [D] for φ′ as follows.
For each v ∈ V , if fv is 0.999-close to WHa for some a ∈ {0, 1}k then set σ(v) = a. Otherwise, set σ(v) to
anything.

Let δ ≥ ε be the fraction of clauses of φ′ that are not satisfied by σ. For each e = uv that is not satisfied by σ,
one of the following must hold:

• One of fu, fv, ge, he is not 0.999-close to a linear function.

Otherwise, let us say that fu, fv, ge, he are 0.999-close to the WH-encodings of σ(u), σ(v), y, y′.

• The first 2k bits of y are not equal to the concatenation of σ(u) and σ(v).

• y′ 6= y ⊗ y.
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• Finally, if we get here then because e is not satisfied by σ. As none of the previous cases applied, then e
is, in particular, not satisfied by σ(u) and σ(v) so some wire of the circuit is incorrectly given by y (whose
first 2k bits are σ(u) and σ(v)). As y′ = y ⊗ y, it must be that Ae · y′ 6= be.

In any case, we have that fu, fv, ge, he will be rejected by the tests in 22.3.3 with probability ≥ 1/2. That is, at
least half of the constraints generated from this edge e will not be satisfied by fu, fv, ge, he.

So, in total, at least a δ/2 ≥ ε/2-fraction of constraints of φ′′ are not satisfied by this assignment as at least
1/2 of the constraints coming from each of the ε-fraction of edges of φ′ are not satisfied. As this holds for any
functions {fv}v∈V and {ge, he}e∈E , sat(φ′′) ≤ 1− ε/2.

22.4 Post-Mortem Discussion

The preparation and alphabet reduction steps did not assume the ε in sat(φ) = 1−ε was bounded by a constant,
it was only the gap amplification step. If we start with a q0CSP2 instance φ with sat(φ) = 1− ε, we have the
resulting instance ψ after applying all reductions to the end of alphabet composition satisfies

sat(ψ) ≤ 1− 1

2
·min{4ε, ε′} = 1−min{ε′/2, 2ε}.

where ε′ was defined in Section 22.2.5.

To conclude the proof of the Lemma ??, simply set ε0 = ε′/2.

A lot of constants were thrown about during these proofs. But these were eventually just tucked into the linear
blowup in the size of the reduction. That is, say φ and φ′ are the “before and after” q0CSP2 instances referred
to in Lemma ?? and say φ has m constraints. Then φ′ has ≤ γ ·m constraints where γ ultimately only depended
on q0 and the parameters (d, λ) of the expander family G we used. The “stopping point” ε0 also only depends
on q0 and (d, λ).

The value q0 is an absolute constant one could work out with some diligence, it came from the number of queries
in the alphabet reduction step which was totally independent of (d, λ) and the “previous” q0.
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