
CMPUT 675: Computational Complexity Theory Winter 2019

Lecture 21 (Mar 26): The PCP Theorem: Part I
Lecturer: Zachary Friggstad Scribe: Zachary Friggstad

21.1 Preliminaries

We now have enough background to prove the PCP theorem.

Between Lectures 21 and 22, these notes begin with a slight recap of what we discussed at the end of lecture
20 and contain a bit of the discussion at the start of lecture 23. They also contain more detail than what was
discussed in the lectures and they lift the assumption that the expanders are loopless. I wanted a comprehensive
writeup you could use as reference if you wanted to verify the details (and it was good for me to be reminded
of some details too).

Theorem 1 PCP(O(log n), O(1)) = NP.

The easy direction PCP(O(log n), O(1)) ⊆ NP was established earlier: recall it is simply because the behaviour
of a (O(log n), O(1))-PCP verifier V can be efficiently simulated on all 2O(logn) = poly(n) random strings of
length O(log n). In this way, we can get an NP-verifier for any L ∈ PCP(O(log n), O(1)) that expects the proof
π to be accepted by V for all random strings.

So we focus on showing NP ⊆ PCP(O(log n), O(1)). As discussed earlier, it suffices to give a “gap introducing”
Karp reduction from 3SAT to any constraint satisfaction problem. By gap introducing, we mean that in the no
case where an instance φ of 3SAT is not satisfiable then in the resulting CSP at most a ρ-fraction of constraints
can be satisfied by any satisfying assignment where ρ < 1 is some constant.

We briefly recall some definitions from earlier lectures:

• For integers q,W , an instance of qCSPW is a constraint satisfaction where each clause depends on a subset
of at most q variables which take values in [W] = {1, . . . ,W}. We say q is the arity of the CSP and W
is the alphabet size of the CSP.

The actual representation of the alphabet is not important, sometimes we use {0, . . . ,W −1} or a different
set of size W .

• For qCSPW instance φ, let sat(φ) be the maximum fraction of clauses that can be satisfied by some
assignment of values [W] to the variables.

• A reduction f that maps instances φ of qCSPW to instances φ′ of q′CSPW ′ is a CL-reduction if:

– Computing φ′ takes poly(|φ|) time.

– If sat(φ) = 1 then sat(φ′) = 1 (i.e. f preserves satisfiability).

– There is some constant C such that if φ has m clauses then φ′ has ≤ C ·m clauses.

Essentially, a CL-reduction if it is a Karp reduction with “linear blowup” in size.

Our main lemma to prove the PCP theorem is the following:

21-1

21-2 Lecture 21: The PCP Theorem: Part I

Lemma 1 There are constants q0 ≥ 3, ε0 > 0 such that there is a CL-reduction f from q0CSP2 to q0CSP2

with the additional property that for any instance φ of q0CSP2 with, say, sat(φ) = 1− ε where ε ≥ 0, we have
sat(φ′) ≤ 1−min{ε0, 2ε}.

Recall the PCP theorem would then follow simply, the proof is recalled here so these notes are more self-
contained.

Proof of the PCP Theorem
An instance of 3SAT can be viewed as an instance of q0CSP2. Thus, for any L ∈ NP there is a Karp reduction
g from L to an instance of q0CSP2.

If x /∈ L then sat(g(x)) ≤ 1−1/m where m is the number of clauses of g(x). Now consider the reduction f from
Lemma 1 and apply it to g(x) dlog2me times, i.e. compute fk(g(x)) where k = dlog2me. This reduction still
runs in polynomial time the number of clauses of f i(g(x)) is at most Ci ·m which is polynomial in m (because
i ≤ dlog2me). But if sat(g(m)) ≤ 1− 1/m then sat(fk(g(m))) ≤ 1−min{ε0, 2k/m} = 1− ε0, as required.

That is, fm ◦ g is a Karp reduction from L to q0CSP2 such that if x /∈ L then sat(fm(g(x))) ≤ 1− ε0.

21.2 Strategy

We begin by outlining the strategy for proving Lemma 1. It is somewhat reminiscent of how we constructed
expanders. Recall that with the expander construction we interleaved two operations: one increased the spectral
gap but also increased the degree. The other operation reduced the degree and only slightly worsened the spectral
gap. Interleaving these two operations produced arbitrarily large expanders.

For the PCP theorem, we consider two main operations: one will decrease the satisfiability of the CSP instance
but will greatly increase the size of the alphabet in the CSP instance (from 2 to a large constant). The other will
reduce the size of the alphabet from this large constant back to 2 while only slightly increasing the satisfiability
of the CSP instance. Throughout, the arity of the CSP will remain bounded by an absolute constant q0.

The first step, decreasing the satisfiability, will come in two major substeps: preparation and gap ampli-
fication. First, the CSP needs to be tweaked (through some simple modifications) so it is a 2CSP instance
with bounded alphabet size such that the graph of constraints is an expander. Then gap amplification uses
the fact it is an expander to greatly increase the unsatisfiability of the instance. The final step, alphabet
reduction, is actually quite easy at this point of the course: we already did the hard work in the proof of
NP ⊆ PCP(poly(n), O(1)) in Lecture 15.

A brief overview of how the parameters vary is summarized in Figure 21.1. For entries with arity 2, we can
think of the CSP φ as being given by a graph Gφ whose variables are vertices and constraints are edges. The
last column includes comments on the properties of Gφ.

Let (d, λ) be fixed values with λ < 1 such that there is a family of (d, λ)-expanders G = {Gn}n≥1 where each
Gn can be constructed in poly(n). Note, we do not require strongly explicit constructions here. Our specific
choice of (d, λ) will be dictated by some properties we require of these expanders in Section 21.3.2.

Let φ be an instance of q0CSP2 for some constant q0 we will discover later. Say sat(φ) = 1 − ε where ε ≤ ε0
for some constant ε0 > 0 that we will, again, discover later. In the following table, each row after the first row
summarizes the relevant properties of the CSP obtained after applying a reduction we will discuss.

All reductions are CL-reductions. The variable D listed below is yet another constant we will discover when
describing the reduction.

Ultimately this proof is due to Dinur [D07], but the original proof of the PCP theorem is from [AS98, ALMSS98].

Lecture 21: The PCP Theorem: Part I 21-3

arity alphabet size sat value graph comments
original φ q0 2 1− ε

prep-1 2 2q0 ≤ 1− ε/q0
prep-2 2 2q0 ≤ 1− ε/(3dq0) graph is regular
prep-3 2 2q0 ≤ 1− ε/(9dq0) graph is an expander

gap amplification 2 D ≤ 1− 4ε
alphabet reduction q0 2 1− 2ε

Figure 21.1: The sequence of steps followed to prove Lemma 1.

The proof we follow for the gap amplification step deviates noticeably from the book [AB09]. It uses a simplifi-
cation in [R06] and the presentation is partially inspired by course notes from [GO05]. Though, it is similar in
spirit to the presentation of gap amplification in the book [AB09].

Ultimately, after these notes there should be only two key details that are missing: the analysis of the linearity
test and the construction of the “base” ((2d)50, d, 0.01)-expander mentioned in the expander construction lecture.
We will provide the analysis of the linearity test next, so only the expander construction will be missing from
the course notes (a source was provided in the expander lecture).

21.3 Preparation

Again, every reduction presented from this point forward will be a CL-reduction.

21.3.1 Prep-1

Input: A q0CSP2 instance φ. Say sat(φ) = 1− ε (could be ε = 0, eg. φ is satisfiable).
Output: A 2CSPW instance φ′ where W = 2q0 with sat(φ′) ≤ 1− ε/q0.

Say φ has n variables X = {x1, . . . , xn} and m clauses C = {C1, . . . , Cm}. Consider the following CL-reduction
that converts φ to an instance φ′ of 2CSP2q0 as follows:

• The variables of φ′ are X ∪ C.

• The alphabet size is 2q0 . For variables of φ′ coming from a clause Ci of φ, view the entries in the alphabet
as a tuple {0, 1}q0 of bits providing an assignment to variables in Ci. If Ci depends on fewer than q0
variables, just use the first few in the tuple.

• For variables of φ′ coming from a variable xj of φ, again view the alphabet as a tuple of bits {0, 1}q0 and
think of the first bit in the tuple as the “value” for xj .

• For each clause Ci and each variable xj appearing in Ci, add a constraint to φ′ depending on xj and Ci
that is satisfied by an assignment σ : X ∪ C → {0, 1}q0 if σ(Ci) satisfies Ci itself and the value it assigns
xj equals the value of xj given by σ(xj).

The number of clauses is ≤ q0 · m and it is clear that satisfiable instances remain satisfiable, so this is a
CL-reduction.

21-4 Lecture 21: The PCP Theorem: Part I

Lemma 2 If sat(φ) = 1− ε then sat(φ′) ≤ 1− ε/q0.

Proof. Consider some assignment σ : X ∪ C → {0, 1}q0 to the variables of φ′. By restricting this to X, we get
an assignment σ′ : X → {0, 1} to the variables of φ. The fraction of clauses that are not satisfied by σ′ is at
least ε. For each clause Ci that is not satisfied by φ′, the corresponding q0 clauses in φ′ that involve Ci cannot
all be satisfied.

That is, if σ(Ci) does not satisfy Ci then all q0 clauses involving Ci in φ′ are not satisfied. Otherwise, if σ(Ci)
does satisfy Ci then its assignment to some variable xj of Ci disagrees with σ(xj).

Observe: The constraint graph of φ′ has no loops.

21.3.2 Prep-2

Input: A 2CSPW instance φ′. Say sat(φ′) ≤ 1− ε′.
Output: A 2CSPW instance φ′′ with sat(φ′′) ≤ 1− ε′/3d. Also, the constraint graph for φ′′ is (d+ 1)-regular
for some constant d.

Let φ′ be an instance of 2CSPW on m clauses and let X ′, C be the variables and clauses of φ′, respectively.
Consider a family G = {Gn}n≥1 of (d, λ)-expanders with λ < 1 such that Gn can be constructed in poly(n) time
and such that for any n and any S ⊆ V (Gn) with |S| ≤ n/2, we have |δ(S)| ≥ 2 · |S|. The existence of such a
family for some constants (d, λ) is an exercise question.

Consider the following reduction that maps φ′ to an instance φ′′ of 2CSPW . The point is that the graph of
constraints is (d+ 1)-regular after the reduction.

For each x′j ∈ X ′, say x′j lies in mj constraints of φ′. Replace x′j with a copy of Gmj where each vertex of Gmj

is thought of as a copy of x′j . The mj original constraints that involved x′j have x′j replaced by a vertex of Gmj

(a copy of x′j) in a 1-to-1 fashion. Finally, each edge of Gmj
is regarded as a constraint that is satisfied only if

both endpoints have the same value.

For each x′j ∈ X, let X ′′j be the nodes of the copy of Gmj
that replaced variable x′j and let X ′′ = ∪x′

j∈X′X ′′j be

the variables of φ′′.

This is a CL-reduction. Again, it is clear that if φ′ is satisfiable then so is φ′′: have all copies of x′j in X ′′j take
the original value of x′j . Each Gn has at most d ·n edges which is certainly an overestimate but does account for
the possibility of loops. So the number of new constraints is at most

∑
j d ·mj = d

∑
jmj = 2dm, recalling the

constraint graph for φ′ has no loops. Thus, the total number of constraints of φ′′ is at most 2dm+m ≤ 3dm.

Lemma 3 There is an assignment σ : X ′′ → [W] for φ′′ satisfying the maximum number of clauses possible
such that for each original variable x′j, σ assigns each variable in X ′′j the same value.

The proof of this lemma is also an assignment question.

Corollary 1 If sat(φ′) = 1− ε′ then sat(φ′′) ≤ 1− ε′/(2d+ 1).

Proof. By the previous Lemma, there is an optimum assignment σ : X ′′ → [W] for φ′′ assigning the same
value to all copies of a variable x′j of φ′. Interpret this as an assignment σ′ : X ′ → [W] in φ where σ′(x′j) is the
common value σ assigns to all copies of x′j in X ′′j .

Lecture 21: The PCP Theorem: Part I 21-5

Then σ′ fails to satisfy at least ε′ ·m clauses of φ′. The corresponding clauses in φ′′ are also unsatisfied, so at
least an ε/(2d+ 1)-fraction of constraints of φ′′ are not satisfied by σ.

Observe that the graph of constraints for φ′′ is a (d+ 1)-regular graph and may contain loops.

21.3.3 Prep-3

Input: A 2CSPW instance φ′′ whose constraint graph Gφ′′ is (d+ 1)-regular. Say sat(φ′′) = 1− ε′′.
Output: A 2CSPW instance φ′′′ whose constraint graph is a (2d + 1, λ′)-expander for some constant λ′ < 1
where sat(φ′′′) ≤ 1− ε′′/3.

Consider the same family of expanders G from the last section. Let φ′′ be an instance of 2CSPW such that
its constraint graph Gφ′′ is (d + 1)-regular. The point of this section is to turn the constraint graph into an
expander graph.

Consider the reduction that takes φ′′ to another instance of 2CSPW as follows. Let n be the number of
variables/vertices of φ′′. Map the nodes of the expander Gn in a one-to-one fashion to the nodes of Gφ′′ and
add all edges of Gn to Gφ′′ . These correspond to new constraints that are satisfied by any variable assignment.

Again, this is clearly a CL reduction.

Lemma 4 If sat(φ′′) = 1− ε′′ then sat(φ′′′) ≤ 1− ε′′/4

Proof. Any assignment to φ′′′ leaves at least an ε-fraction of the clauses of φ′′ unsatisfied. An d′-regular graph
on n nodes that may have loops contains between d

2 · n and d · n edges. As Gφ′′ is (d + 1)-regular and since
we obtained φ′′′ by adding a d-regular graph, at least 1/3 of the constraints in φ′′ are from φ′. So at least an
ε/3-fraction of edges of φ′′′ are not satisfied.

Lemma 5 The graph Gφ′′′ of constraints of φ′′′ is a
(
2d+ 1, 23 + λ

3

)
-expander.

Proof. The random walk matrix A of Gφ′′′) is

A =
d+ 1

2d+ 1
·Aφ′′ +

d

2d+ 1
·An

where Aφ′′ is the random walk matrix of Gφ′′ and An is the random walk matrix of Gn. The second largest
eigenvalue of An is at most λ and the second largest eigenvalue of Aφ′′ is, trivially, at most 1. Let x ∈ Rn be a
unit vector that is an eigenvector for the second largest eigenvalue λ′ of A.

So by a Rayleigh quotient and the fact x is orthogonal to the all-1 vector to justify the second inequality,

|λ′| = |〈Ax, x〉| ≤ d+ 1

2d+ 1
· |〈Aφ′′x, x〉|+ d

2d+ 1
· |〈Anx, x〉| ≤

d+ 1

2d+ 1
· 1 +

d

2d+ 1
· λ ≤ 2

3
+
λ

3
.

The bound 2
3 + λ

3 from the proof is obviously crude since d is likely modestly large. But any constant bound
< 1 suffices.

21-6 Lecture 21: The PCP Theorem: Part I

21.4 Gap Amplification

Input: A 2CSPW instance φ whose constraint graph G is a (d′, λ′)-expander for some constants d′, λ′. Say
sat(φ) = 1− ε where ε could be 0 (if it is satisfiable).
Output: A 2CSPD instance φ′ for some constant D where sat(φ′) ≤ 1 − min{4ε, ε′} where ε′ > 0 is some
constant. Both D and ε′ will be determined in the proof.

Before describing the gap amplification step, we should discuss a different form of random walk on a graph
and analyze its properties. We will begin by assuming the graph has no loops. Of course, the expanders we
constructed earlier have loops. The necessary adjustments to the proof to account for loops will be discussed
at the end.

21.4.1 Lazy Random Walks

The random walk we consider in the reduction is the same as a standard random walk from a uniformly chosen
vertex, except the stopping point is determined by flipping a biased coin after each step rather than just some
bounded length.

Let G = (V ;E) be a d-regular graph. Consider the following process where t > 1 (which will be a fixed
constant).

Lazy Random Walk

• v0 ∼ V

• i← 0

• loop

– vi+1 is a random neighbour of vi chosen by sampling a random edge touching vi and crossing that
edge (it could be vi+1 = vi if a loop at vi is sampled)

– i← i+ 1

– with probability 1/t, stop the random walk (break the loop)

This walk eventually stops with probability 1 since the probability it takes at least k steps is (1− 1/t)k.

We also consider the following alternative process. The main difference is that we are given a start vertex and
we flip the coin to see if we should stop also before the first step. Let t > 1 and let u ∈ V .

Lazy Random Walk 2

• v0 ← u

• i← 0

• loop

– with probability 1/t, stop the random walk (break the loop)

– vi+1 is a random neighbour of vi chosen by sampling a random edge touching vi and crossing that
edge (it could be vi+1 = vi if a loop at vi is sampled)

– i← i+ 1

Lecture 21: The PCP Theorem: Part I 21-7

We summarize some important properties of these walks.

Let uw be an edge and k ≥ 1 be an integer. Let D(u, v, k) be the distribution over walks if we conditioned Lazy
Random Walk 1 to use exactly k steps of the form u→ v (in that direction).

Lemma 6 The distribution over the start vertex a of a path from D(u, v, k) is the same as the distribution
over endpoints obtained from starting Lazy Random Walk 2 from u. Similarly, the distribution over the end
vertex b of a path from D(u, v, k) is the same as the distribution over endpoints obtained from starting Lazy
Random Walk 2 from v. The random variables a, b are independent.

Proof. This is slightly informal, but conveys the ideas.

We first discuss how b is distributed as if it was sampled from Lazy Random Walk 2 starting from v. Observe
that if this lazy random walk ever uses a u→ v step, then it is like it starts over again from v. That is, whether
we declare it “failed” and restart it or if we continue it, we get the same distribution over endpoints. Therefore,
conditioning the Lazy Random Walk 2 starting from v on the event that a u → v step is never taken gives
us the same distribution as the original Lazy Random Walk 2 starting from v.

For the first part regarding a, we could reason similarly and get that the distribution over endpoints taking
Lazy Random Walk 2 from u is the same as if we had conditioned this distribution to not take a v → u step.
One just has to observe everything is reversible because the graph is undirected and d′-regular: the probability
a Lazy Random Walk 2 from u that avoids v → u ends at a is the same as the probability that a Lazy
Random Walk 1 from a that avoids u→ v ends at u.

Independence of the endpoints a and b follows as these two lazy random walks can be done independently (i.e.
once the walk from a to the last occurrence of u → v is known, the endpoint b is still distributed according to
Lazy Random Walk 2 from v).

21.4.2 The Variables and Alphabet

The variables of φ′ are the same as the variables in φ, namely we think of them as the vertices V of the constraint
graph G of φ.

We will fix some constant t soon. For this constant, let the new alphabet size be D := W d′t+1

and think of the
alphabet as tuples of the form [W]d

t+1

. For vertices u, v, say that u has an opinion for v if the shortest path
distance d(u, v) in G is at most t. Note that any vertex u has an opinion for at most dt+1 vertices.

Think: For u ∈ V and an assignment σ(u) ∈ [W]d
′t+1

, σ(u) is giving u’s opinion for the W -value every nearby
node should take. That is, each v that is within distance t of u has a corresponding coordinate in the tuple
[W]d′t+1 for u. Note, σ(u) may contain “unused” entries that do not correspond to vertices u has an opinion
for, this is ok.

21.4.3 The Constraints

We temporarily consider weighted CSPs. That is, each constraint has a nonnegative weight and all weights sum
to 1. The value of an assignment is the total weight of all constraints that are satisfied. So an unweighted CSP
with m constraints can be thought of as a weighted CSP where each constraint has weight 1/m.

We will describe a randomized procedure that generates a constraint randomly. The weight of the constraint
will be the probability it is generated. We first describe a procedure that, in fact, samples infinitely many
constraints but with decreasing probabilities (akin to the idea that we can toss coins until we see tails). It is

21-8 Lecture 21: The PCP Theorem: Part I

more convenient to analyze this procedure. Later, we will fix this issue in a simple way to only generate O(n)
constraints.

Constraints - Version 1

Perform Lazy Random Walk 1 to get a path a = v0, v1, . . . , vk = b. Add an a-b edge/constraint to φ′

that is satisfied if and only if for every step vivi+1 for which a has an opinion for vi and b has an opinion for
vi+1, the vivi+1 constraint in φ is satisfied by this opinion.

More precisely, if σ : V → [W]d
′t+1

is an assignment for φ′ then for any vivi+1 step for which d(a, vi) ≤ t and
d(b, vi+1) ≤ t, the opinion of a for vi given by σ(a) and the opinion of b for vi+1 given by σ(b) satisfy the
constraint vivi+1 in φ.

The proof continues in Lecture 22...

References

AB09 S.Arora and B.Barak, Computational Complexity: A Modern Approach, Cambridge University Press,New
York, NY, USA, 2009, pp. 126–151.

ALMSS98 S.Arora, C.Lund, R.Motwani, M.Sudan, and M. Szegedy, Proof verification and the hardness of
approximation problems, Journal of the ACM 45 (3): 501–555, 1998.

AS98 S.Arora and S.Safra, Probabilistic checking of proofs: A new characterization of NP, Journal of the
ACM, 45 (1): 70–122, 1998.

D07 I.Dinur, The PCP theorem by gap amplification, Journal of the ACM, 54 (3): 12, 2007.

GO05 V.Guruswami and R.O’Donnell, CSE 533: The PCP Theorem and Hardness of Approximation,
https://courses.cs.washington.edu/courses/cse533/05au/, 2005.

R06 J.Radhakrishnan, Gap amplification in PCPs using lazy random walks, In Proceedings of ICALP,
96–107, 2006.

https://courses.cs.washington.edu/courses/cse533/05au/

	Preliminaries
	Strategy
	Preparation
	Prep-1
	Prep-2
	Prep-3

	Gap Amplification
	Lazy Random Walks
	The Variables and Alphabet
	The Constraints

