
CMPUT 675: Computational Complexity Theory Winter 2019

Lecture 20 (March 21): Construction of Expanders and PCPMain Lemma
Lecturer: Zachary Friggstad Scribe: Ramin Mousavi

20.1 Finishing the Proof of the Expander Walk Theorem

We give a quick overview of the definitions from the previous lecture, see the last lecture for more precise
definitions.

Recall the definition of a random walk matrix AG of a d-regular graph G = (V,E). Let |λ1(AG)| ≥ |λ2(AG)| ≥
... ≥ |λn(AG)| be the eigenvalues of A (with multiplicity), we omit the subscript G when the graph is clear from
the context. We say G is an (n, d, λ)-expander if |V | = n, G is a d-regular graph, and |λ2(A)| ≤ λ (in fact, we
can show that λ2(A) is bounded at least zero so we do not need the absolute value). Recall from the last lecture
that the Kronecker product of two matrices A and B is denoted by A⊗B. The spectral norm of a matrix A is
denoted by ‖A‖ and is the maximum stretch over the unit vectors. Denote the n-dimensional vector with 1

n on
all its coordinates by 1.

In the proof of expander walk theorem from last lecture, we used Lemma 1 (below) without proving it. We
prove this lemma in this section. In Section 20.2, we discuss some tools that will be used in Section 20.3 for
constructing a family of expander graphs. In Section 20.4, we state the main lemma for proving the PCP
theorem and show how the PCP theorem follows from this lemma.

Lemma 1 Let G be an (n, d, λ)-expander graph, and let A be the random walk matrix of G. Then

A = (1− λ)J + λC, (20.1)

where Jn is the random walk matrix of a complete graph with loops and C is a matrix with ‖C‖ ≤ 1

Proof. We assume λ 6= 0, one can prove that if λ = 0 (i.e. all eigenvalues are 0 except for the first eigenvalue)
then the random walk matrix has 1/n in each entry: indeed any vector v that is orthogonal to 1 would then
be an eigenvector so it would have A · v = 0. Since this holds for all v ⊥ 1, then every row of A has all entries
being the same. As each row of of A sums to 1, then A has 1/n in each entry.

Define C to be C := 1
λ (A− (1− λ)Jn). We claim that ‖C‖ ≤ 1. Let x be a unit vector with x = u+ v, where

u = α · 1 for some α and v ⊥ 1. Note that 1 is the eigenvector corresponding to the largest eigenvalue (which
is 1) of both A and Jn, and hence Cu = u. Also Jnv = 0 and so Cv = 1

λAv. By a Rayleigh quotient, together
with the facts that v ⊥ 1 and λ2 ≤ λ, we have

‖Av‖22 ≤ λ2
2‖v‖22 ≤ λ2‖v‖22. (20.2)

Using the above observations, we get

‖Cx‖22 = ‖Cu+ Cv‖22 = ‖u+
1

λ
Av‖22 = ‖u‖22 +

1

λ
‖Av‖22 ≤ ‖u‖22 + ‖v‖22 = ‖u+ v‖22 = ‖x‖22 = 1,

where the third equality holds by Pythagoras Theorem and the fact that Av ⊥ 11, the first inequality comes
from (1.2), the second to the last equality holds by Pythagoras Theorem and the fact that u ⊥ v.

1This follows if we write v as a linear combination of eigenvectors of A.

20-1

20-2 Lecture 20: Construction of Expanders and PCP Main Lemma

20.2 Different Graph Products

In this section, we introduce two graph products and explore their properties. We start with an easy one.

20.2.1 Path Product

Let G be an (n, d, λ)-expander with random walk matrix A. For t ≥ 2, the path product of G (t times) is denoted
by Gt is the graph described by the random walk matrix At. It is easy to see that Ati,j is the number of walks
of length exactly t in G from i to j divided by dt. Since, for each vertex v, there are exactly dt many different
walks of length t starting at v, Gt is dt-regular. Furthermore, using the definition of eigenvalue, we can see that
λi(A

t) = (λi(A))t, and hence |λ2(At)| ≤ λt. We conclude that Gt is (n, dt, λt)-expander.

20.2.2 Replacement Product

Let G be a D-regular graph on n vertices with random walk matrix A, and let H be a d-regular graph on D
vertices with random walk matrix B. The replacement product of G and H is denoted by G R© H is a 2d-regular
graph with n ·D vertices constructed as follows:

Label vertices of H by integers in {1, ..., D}. For each vertex u of G, we label the neighbours of u by a number
in {1, ..., D}, please see Example 1.

1. Replace each vertex v ∈ V (G) by a copy Hv of H.

2. For each uv ∈ E(G), let v be the i-th neighbour of u, and let u be the j-th neighbour of v (based on our
labeling defined above). Then, place d parallel edges between vertex i in Hu and vertex j in Hv.

Let us compute the random walk matrix M of G R© H in terms of A and B. Define Â to be an (n ·D)× (n ·D)
matrix where its rows and columns are indexed by pairs (u, i) where u ∈ V (G) and i ∈ V (H). The (v, j)-th
column of Â has 0 everywhere except a single 1 on the (u, i)-th place where v is the i-th neighbour of u and u
is the j-th neighbour of v. So Â represent the edges corresponding to the edges in G (i.e., the edges that were
obtained by step 2).

It is easy to see that In ⊗ B represent the edges corresponding to the edges in H (i.e., the edges that were
obtained by step 1).

The use of parallel edges in step 2 is to make sure that from a vertex in G R© H, with the same probability
either we walk on an edge corresponding to E(H) or on an edge corresponding to E(G). Thus, we can describe
M as follows:

M =
1

2
Â+

1

2
(In ⊗B). (20.3)

When d << D, the replacement product results in a graph with substantially smaller degree than G’s degree
while its expansion is not much less than G’s expansion. The former statement is clear, but we formalize the
latter statement in Lemma 2. Before stating the lemma, let us give an example of replacement product. Note
that the following example is merely for clarifying the construction of this product and we did not take in to
account the expansions.

Example 1 Let G and H be the two graphs defined in Figure 20.1. Consider the following labeling of neighbours
of vertices in G:

Lecture 20: Construction of Expanders and PCP Main Lemma 20-3

u

v w

(a) Graph G

1

2

(b) Graph H

1 2

2 1

1

2

Hu

Hv

Hw

(c) Graph G R© H

Figure 20.1: Graphs for Example 1.

• Labeling of the neighbours of u: v has label 1, and w has label 2.

• Labeling of the neighbours of v: w has label 1, and u has label 2.

• Labeling of the neighbours of w: u has label 1, and v has label 2.

Then, G R© H is the graph shown in Figure 20.1(c), respect to the above labeling.

Lemma 2 Let G be an (n,D, 1 − ε)-expander graph, and let H be an (D, d, 1 − δ)-expander graph. Then,

G R© H is an (n ·D, 2d, 1− ε·δ2
24)-expander graph.

Proof. Let A, B, and M be the random walk matrices for G, H, and G R© H, respectively. By Lemma 1, we
can write

B = δJD + (1− δ)B′, (20.4)

where ‖B′‖ ≤ 1. We need to show that λ2(M) ≤ 1 − εδ2

24 which suffices to show that λ2(M3) = (λ2(M))3 ≤
1− εδ2

8 . Using the LHS of (20.4) instead of B in M , we get

M3 = (
1

2
Â+

δ

2
(In ⊗ JD) +

1− δ
2

(In ⊗B′))3 (20.5)

= (1− δ2

8
)C +

δ2

8
(In ⊗ JD)Â(In ⊗ JD), (20.6)

where ‖C‖ ≤ 1. This is because, all the matrices involved in (1.5) have spectral norm at most 1, and the fact
that both ‖AB‖ and ||A⊗B|| are bounded by ‖A‖‖B‖ for any two symmetric matrices A,B (this is left as an
exercise). It is clear that ‖In‖ = ‖JD‖ = 1. Also ‖Â‖ = 1 because of its definition Â is a permutation matrix
of InD. Finally, since ‖B′‖ ≤ 1 (by Lemma 1), we have ‖In ⊗B′‖ ≤ 1 (this is left as an exercise).

We will prove the following:

Claim 1 (In ⊗ JD)Â(In ⊗ JD) = A⊗ JD.

20-4 Lecture 20: Construction of Expanders and PCP Main Lemma

Suppose the claim holds for a moment, together with (20.6), for any x such that x ⊥ 1, we have

‖M3x‖2 ≤ (1− δ2

8
)‖Cx‖2 +

δ2

8
‖(A⊗ JD)x‖2 (20.7)

≤ (1− δ2

8
)‖x‖2 +

δ2

8
max{λ2(A), λ2(JD)}‖x‖2 (20.8)

= (1− δ2

8
)‖x‖2 +

δ2

8
λ2(A)‖x‖2 (20.9)

= (1− δ2

8
)‖x‖2 +

δ2

8
(1− ε)‖x‖2 (20.10)

= (1− εδ2

8
)‖x‖2, (20.11)

where (20.8) follows from the facts that ‖C‖ ≤ 1, and by Rayleigh quotient we have ‖(A ⊗ JD)x‖2 ≤ λ2(A ⊗
JD)‖x‖2 for all x ⊥ 1. Again, using Rayleigh quotient, together with (20.11), we conclude that λ2(M3) ≤ 1− εδ2

8 ,
as desired.

It remains the proof of Claim 1.

Proof of Claim 1. We can view the matrix on the LHS as the random walk matrix of the graph on nD vertices
such that from a vertex (u, i), first uniformly at random picks a label 1 ≤ k ≤ D. Let v be the k-th neighbour
of u in G. Then uniformly at random it picks another label 1 ≤ j ≤ D and then move to the vertex (v, j).
On the other hand, the matrix on the RHS is the random walk matrix of a graph on nD vertices such that
from a vertex (u, i), first with probability 1

D picks a neighbour v of u in G and then uniformly at random picks
a label 1 ≤ j ≤ D and move to (v, j).
As we showed, both matrices are describing the same random walk matrices of a graph.

20.3 Constructing Expander Graphs

We need the following lemma (Theorem 21.8 in [AB09]) about existence of expander graphs with “small” number
of vertices. We omit its proof here.

Lemma 3 For some constant d ≥ 3, there is a (D, d, 0.01)-expander graph where D = (2d)50.

For the curious, a proof can be found in [HLW06], in particular Theorem 7.5 would imply the existence of such
a graph. Then, if one wants to complete the entire description of how to construct expanders, they can just
hard code this graph into the algorithm (or one could find it in O(1) time using brute force, given that we know
it exists).

For an appropriate constant d, the above lemma states there is an expander graph with a constant number
of vertices. Thus, we can find such graph H with brute force search. Set G1 := H with edges doubled. We
construct the following family of expanders:

Gk = G50
k−1 R© H. (20.12)

Claim 2 Gk is (Dk, 2d, 0.98)-expander graph, where d and D are from Lemma 3.

Lecture 20: Construction of Expanders and PCP Main Lemma 20-5

Proof. We proceed by induction on k. So suppose Gk−1 is (Dk, 2d, 0.98)-expander. From the property of path
product that were discussed in Section 20.2.1, we know that G50

k−1 is (Dk−1, (2d)50, 0.9850)-expander. Note that
D = (2d)50; hence, G50

k−1 R© H is defined. Recall that H is (D, d, 0.01)-expander. By Lemma 2, we conclude

that Gk has Dk−1 ·D = Dk vertices, its degree is 2d, and its expansion parameter λ is at most

1− (1− 0.9850)(1− 0.01)2

24
≤ 0.98, (20.13)

as desired.

Note that we can compute the adjacency matrix of Gk in poly(Dk). Suppose computing the adjacency matrix
of Gk takes T (k) time. Then, T (k) = T (k − 1) + (Dk−1)c for some constant c (the second term comes from
powering a Dk−1×Dk−1 matrix to a constant number and at the end computing the replacement product which
can be done in poly(Dk−1), see (20.3)). Hence, our family of expanders is explicit.

We can get a strongly explicit expander family by introducing one further (simple) operation, see Section 21.3.5
of [AB09] for details if you are curious.

20.4 PCP Main Lemma

We now turn to discussing how to to prove the PCP theorem. Much more discussion is found in the notes of
the next lecture, but we quickly summarize what was covered in this lecture.

In this section, we state the main lemma for proving the PCP theorem. Before that, we need the following
definitions:

Definition 1 (q CSPW) For integers q, W ≥ 1, the qCSPW is a language consists of variables x1, ..., xn that
take value in {0, ...,W − 1} and m functions fj : {0, ...,W − 1}q → {0, 1} for 1 ≤ j ≤ m.
Let x̄ be an assignment to the variables of an instance φ of qCSPW . Then, define sat(φ) to be

sat(φ) := max
x̄

∑
j

fj(x̄)

m
.

Definition 2 (CL-reduction) A function f : qCSPW → qCSPW is a CL-reduction if

• f is polytime computable function.

• For a qCSPW instance φ, if sat(φ) = 1, then sat(f(φ)) = 1.

• The number of constraints (functions) in the mapped instance increases by an O(1)-factor.

Recall the PCP theorem from Lecture 14, i.e., PCP(O(log n), O(1)) = NP. We show that the PCP theorem
follows from the following lemma:

Lemma 4 (PCP main lemma) There exist constants q ≥ 3, ε0 > 0, and a CL-reduction f : qCSP2 →
qCSP2 such that

sat(φ) = 1− ε⇒ sat(f(φ)) ≤ 1−min{ε0, 2ε}.

Now the PCP theorem follows by: Let L ∈ NP, then there is a Karp-reduction g from L to q0 SAT, a special
case of q0 − CSP2. For an instance x of L, say g(x) has m constraints. Apply f from the PCP main lemma

20-6 Lecture 20: Construction of Expanders and PCP Main Lemma

for k := dlog2me times to g, i.e., compute fk(g(x)). Note that from the third property of CL-reduction and
the value of k, we conclude that fk(g(x)) runs in polytime. Furthermore, if x ∈ L, then fk(g(x)) is satisfiable.
Suppose x /∈ L. Then, sat(g(x)) ≤ 1− 1

m . Thus, sat(fk(g(x))) ≤ 1−min{ε0,m · 1
m} = 1− ε0.

From this, we get a simple PCP(O(log n), O(1))-verifier for L, i.e., given x, the proof consists of fk(g(x)) and
a truth assignment for fk(g(x)). Then the verifier samples a random clause and check the given assignment
satisfies this clause or not. In the No-case, the probability that the clause is satisfied is at most 1 − ε0. Since
1− ε0 is a constant, we can reduce it to 1

2 by a constant number of repetition.

References

AB09 S. Arora and B. Barak, Computational Complexity: A Modern Approach, Cambridge University Press,
2009.

HLW06 S. Hoory, N. Linial, and A. Wigderson, Expander graphs and their applications, Bulletins of the
American Mathematical Society, 43:439–561, 2006.
http://www.cs.huji.ac.il/~nati/PAPERS/expander_survey.pdf

http://www.cs.huji.ac.il/~nati/PAPERS/expander_survey.pdf

	Finishing the Proof of the Expander Walk Theorem
	Different Graph Products
	Path Product
	Replacement Product

	Constructing Expander Graphs
	PCP Main Lemma

