
CMPUT 675: Computational Complexity Theory Winter 2019

Lecture 19 (Mar 19): Expander Graphs
Lecturer: Zachary Friggstad Scribe: Noah Weninger

19.1 Definitions

Definition 1 Say G is a (n, d, λ)-expander if

• The number of nodes is n.

• G is d-regular. That is, every vertex touches exactly d edges. The graph may include parallel edges and
loops, but loops only count once towards d.

• |λ2| ≤ λ where λ1, . . . , λn are the eigenvalues of G with |λ1| ≥ · · · ≥ |λn|.

We will see this definition is most useful when λ < 1 and is independent of n.

Definition 2 Say {Gn}n≥1 is a family of (d, λ)-expanders if each Gn is a (n, d, λ)-expander.

People frequently use the term “expander graph” to mean a graph from such a family for some constant d and
some λ < 1.

Definition 3 Say {Gn}n≥1 is a strongly explicit family of (d, λ)-expanders if, given n and some vertex v ∈ [n],
we can compute the neighbours of v in Gn in polylog(n) time (i.e. polynomial in the logarithm of n).

19.2 Random walks in expanders

There are quite a few “random walks in expanders” results that are useful for different applications. We will
cover one that is particularly useful for applications we will discuss shortly.

Theorem 1 Let G = (V ;E) be a (n, d, λ)-expander. Consider a random walk v0, . . . , vk where

• v0 is uniformly chosen node of G.

• vi+1 is a random neighbour of vi, selected by picking an edge incident to vi uniformly at random. Note
that vi may equal vi+1 if the chosen edge is a loop.

For any B ⊆ V , let β = |B|
|V | . Then the probability that the random walk stays in B satisfies

Pr[v0, . . . , vk ∈ B] ≤ ((1− λ) ·
√
β + λ)k.

19-1

19-2 Lecture 19: Expander Graphs

For example, say β = 1
2 . Then there is a 50% chance that v0 ∈ B. If G wasn’t an expander, then there might

be only a single edge connecting B to V − B, so there is a high probability of staying in B after a single step.
But in an expander graph, the number of edges leaving B is linear in |B|, so, intuitively, there is a constant
probability of leaving the set in each step. This is not a precise statement, but what is true is that if λ, β < 1,
then the probability of staying in B decreases geometrically with the length of the walk.

This theorem will be proved later on, but first we’ll motivate it with a few applications.

19.3 Applications

19.3.1 Error reduction rates for RP

Take L ∈ RP and let M be a PTM using r(n) random bits to decide L. So ∀x,

• x ∈ L⇒ Pr
y∼{0,1}r(|x|)

[M(x, y) = accept] = 1

• x /∈ L⇒ Pr
y∼{0,1}r(|x|)

[M(x, y) = accept] ≤ 1

2

Recall that we could drive down the probability of accepting a “No” instance to 2−k by independently repeating
M(x) k times. However, for k repetitions, this method requires k · r(n) random bits. Here, we will show that
we can improve this to only require O(k) + r(n) random bits.

Let G be a strongly explicit (2r(|x|), d, λ)-expander graph where d is a constant and λ < 1. We haven’t yet
seen how to construct one, but let’s assume we have such a graph (represented implicitly). Notice there is a
one-to-one correspondence between the nodes of G and all strings y ∈ {0, 1}r(|x|). We can then use G to decide
x ∈ L with the following procedure:

Let y0, . . . , yk be a random walk in G as in the statement of Theorem 1.
Accept iff ∀0 ≤ i ≤ k, M(x, yi) = accept.

Proof. Creating the random walk takes O(k)+r(n) random bits: r(n) to select v0, then k ·O(log d) = O(k) bits1

to select a neighbour of vi for all 0 ≤ i < k. Since G is strongly explicit, computing neighbouring vertices only
takes polylogarithmic time in 2r(n), which is polynomial in n. Let Bx = {y ∈ {0, 1}r(|x|) : M(x, y) = accept}.
The procedure decides x ∈ L because:

• If x ∈ L, Bx = {0, 1}r(|x|), so y0, . . . , yk ∈ Bx and therefore all runs of M(x, yi) are accepted.

• If x /∈ L, |Bx| ≤ 1
2 · |{0, 1}

r(|x|)| so by Theorem 1,

Pr
y0,...,yk

[y0, . . . , yk ∈ Bx] ≤ ((1− λ) · 1√
2

+ λ)k

Since λ is a constant < 1, for some constant c > 0, we have ((1−λ) · 1√
2

+λ)k = 2−c·k. So, we can achieve

the same error bound as with independent repetitions using only O(k) + r(n) random bits.

1If d is not a power of 2 there is a subtlety in how to do this with coin flips. We could (implicitly) add ≤ d loops to each vertex

so each vertex has degree 2k. It is easy to see the graph remains an expander: the parameter λ would change to d
2k

·λ+ 2k−d
2k

·1 < 1
as the new random walk matrix is the corresponding averaging of G’s random walk matrix and the identity matrix I.

Lecture 19: Expander Graphs 19-3

19.3.2 Approximability bounds

Claim 1 There exists an (O(log n), O(log n))-PCP verifier V for SAT such that ∀φ:

• φ ∈ SAT ⇒ ∃π such that Pr
r

[V (φ, π, r)] = 1

• φ /∈ SAT ⇒ ∀π such that Pr
r

[V (φ, π, r)] ≤ 1

ns
for some constant s that is independent of n.

Proof. This proof is very similar to the previous statement about languages in RP, so here we only present the
setup; the result follows almost exactly as before. By the PCP theorem, we know there exists an (O(log n), O(1))-
PCP verifier V ′ for SAT such that ∀φ:

• φ ∈ SAT ⇒ ∃π such that Pr
r

[V ′(φ, π, r)] = 1

• φ /∈ SAT ⇒ ∀π such that Pr
r

[V ′(φ, π, r)] ≤ 1

2

Now, using V ′, we will construct V .

V expects the same proof π as V ′. Say V ′ uses r(n) := c · log n random bits. First, for some k ∈ Θ(log n), V
samples r0, . . . , rk by a random walk in some (2r(n), d, λ)-expander where d is constant and λ < 1. Note such
an expander does not need to be strongly explicit, we just need to construct it in poly(n) time. Then V accepts
iff ∀0 ≤ i ≤ k, V ′(x, π, ri) = accept.

Since each call to V ′ queries O(1) bits of the proof, V queries only O(log n) bits. Note that if V didn’t use
expanders and just ran V ′ with k independent random bit strings, it would use Θ(log2 n) random bits. But
here we only need O(log n): r(n) bits to select r0, and log n · O(log d) = O(log n) bits to select a neighbour of
ri for all 0 ≤ i < k.

The justification for this is just as in the previous proof.

Corollary 1 There exists a constant γ > 0 such that there is no 1
nγ -approximation for max independent set

unless P = NP.

Proof. Consider the following reduction from SAT to max independent set. Let V be a (c · log n, q · log n)-PCP
verifier for SAT as in Claim 1 (so c, q and s are all constant). Then build a graph H by:

• Nodes are (r, b) ∈ {0, 1}c·logn×{0, 1}q·logn such that V would accept x given random string r if the queried
bits of the proof were b.

• [(r, b), (r′, b′)] is an edge if they disagree on a bit of the proof. Note that b and b′ cannot be compared as
strings: we need to first find all queried proof indices that are common to V with both random strings r
and r′, then check the corresponding positions in b and b′ for consistency.

We would like to show that

• φ ∈ SAT⇒ max independent set size in H is ≥ nc,

• φ /∈ SAT⇒ max independent set size in H is ≤ nc−s.

19-4 Lecture 19: Expander Graphs

Consider both cases:

• φ ∈ SAT. Let π be a proof that is accepted by V for any random string r. Consider I = {(r, b) : r ∈
{0, 1}c·logn and b agrees with π on the positions queried by V given r}. There can only be one vertex
in I for each random string r, because otherwise the two b’s would have to disagree somewhere. Since
every b in I agrees with π, there cannot be an edge between any two vertices in the set. Therefore I is a
maximum independent set in H and it has size 2c·logn = nc.

• φ /∈ SAT. Let I be a max independent set of H. Form a proof string π as follows: ∀(r, b) ∈ I, set the bits
of π queried by V given r according to b. As I is an independent set, this does not give conflicting values
to any bits of π. Any unspecified bit of π can be set arbitrarily. Then

|I|
2c·logn

≤ Pr
r

[V (x, π, r) = accept] ≤ 1

ns

where s is as in Claim 1. This follows because the verifier would accept π for each random string r such
that (r, b) ∈ I for some b. Therefore |I| ≤ nc−s.

However, we wanted to our result in terms of the size of the graph, which may differ from n. Let N be the
number of nodes in H, so N ≤ nc+q. Then

max ind set in “No” case

max ind set in “Yes” case
≤ nc−s

nc
=

1

ns
≤ 1

N
s
c+q

.

Set γ = s
c+q .

19.4 Proof of the expander random walk result

Before we can show Theorem 1, we need a few fundamentals from linear algebra.

Definition 4 For a square matrix A, the spectral norm is defined as ‖A‖ := max
x:‖x‖2=1

‖A · x‖2.

Informally the spectral norm of A is the maximum scale by which A can stretch any vector. It has a few useful
properties: ∀ matrices A,B and vectors x,

‖A ·B‖ ≤ ‖A‖ · ‖B‖
‖A+B‖ ≤ ‖A‖+ ‖B‖
‖A · x‖2 ≤ ‖A‖ · ‖x‖2.

The proofs of these properties are left as an exercise (assignment 5, exercise 3).

We define 111 to be the n-element column vector of all 1
n , with n inferred from context. Additionally, define J as

the n× n matrix of all 1
n . Intuitively, J is the random walk matrix of the n-clique graph where every node has

a self loop, so a single random step could lead to any other vertex uniformly at random.

Theorem 2 (Cauchy-Schwarz inequality) For x, y ∈ Rn, |〈x, y〉| ≤ ‖x‖2 · ‖y‖2.

Proof. ∀t ∈ R, 0 ≤ 〈x · t − y, x · t − y〉 = t2 · ‖x‖22 − 2t · 〈x, y〉 + ‖y‖22. Let us pick t to put the most stress on
this inequality: to minimize the quadratic.

Lecture 19: Expander Graphs 19-5

If we take t = 〈x,y〉
‖x‖22

, then we have

0 ≤ 〈x, y〉
2

‖x‖22
− 2 · 〈x, y〉

2

‖x‖22
+ ‖y‖22 = ‖y‖22 −

〈x, y〉2

‖x‖22
0 ≤ ‖x‖22 · ‖y‖22 − 〈x, y〉2

〈x, y〉2 ≤ ‖x‖22 · ‖y‖22
|〈x, y〉|2 ≤ ‖x‖22 · ‖y‖22
|〈x, y〉| ≤ ‖x‖2 · ‖y‖2

Corollary 2 Define ‖x‖1 :=
∑n
i=1 |xi|. Then ∀x ∈ Rn, ‖x‖2 ≤ ‖x‖1 ≤

√
n · ‖x‖2.

Proof. Let xi = |xi|. Notice that n · 111 is an column vector of ones, so ‖n · 111‖2 =
√
n. Then ‖x‖1 = 〈x, n · 111〉 ≤

‖x‖2 · ‖n · 111‖2 = ‖x‖2 ·
√
n. For the lower bound, observe ‖x‖22 =

∑n
i=1 x

2
i ≤ (

∑n
i=1 xi)

2 = ‖x‖21.

Finally, we have all the tools we need to tackle Theorem 1.

Proof of Theorem 1. Recall:

• G = (V ;E) is an (n, d, λ)-expander.

• v0 ∼ nodes of G.

• vi+1 ∼ neighbours of vi by picking a random edge uniformly.

We want to to show ∀B ⊆ V, Pr[v0, . . . , vk ∈ B] ≤ ((1− λ)
√
β + λ)k, where |B| = β · n.

Let Zu,v =

{
1 if u = v and u ∈ B
0 otherwise.

For any vector v, Zv will zero out the entries that are not in B. So ‖Z ·111‖1 = β = Pr[v0 ∈ B]. After taking one
random step, we have ‖(Z ·A) ·Z ·111‖1 = Pr[v0, v1 ∈ B] where A is the random walk matrix of G. By induction,
‖(Z ·A)k · Z · 111‖1 = Pr[v0, . . . , vk ∈ B]. Note that by Corollary 2, ‖(Z ·A)k · Z · 111‖1 ≤

√
n · ‖(Z ·A)k · Z · 111‖2.

Define the notation λ2(A) to mean the 2nd largest eigenvalue of A (in absolute value). Recall that J is the
uniform random walk matrix. We claim that A = (1− λ2(A)) · J + λ2(A) ·C where ‖C‖ ≤ 1. The proof will be
included in the next lecture. For now, we will assume it is true in order to finish the current proof.

Direct calculation shows ‖Z · 111‖2 =
√
β√
n

. By the properties of the spectral norm, ‖(Z ·A)k · Z · 111‖2 ≤ ‖Z ·A‖k ·
‖Z · 111‖2 = ‖Z ·A‖k ·

√
β√
n

. Then, by the claim

‖Z ·A‖ = ‖Z · (1− λ2(A)) · J + Z · λ2(A) · C‖
≤ (1− λ2(A)) · ‖Z · J‖+ λ2(A) · ‖Z · C‖

Since ‖C‖ ≤ 1, we have ‖Z ·C‖ ≤ 1. Now we need to show ‖Z ·J‖ ≤
√
β. Let x be a unit vector that maximizes

‖Z · J · x‖2, so that ‖Z · J · x‖2 = ‖Z · J‖. Then J · x = α ·111 for α =
∑
v xv, because all rows of J are 111>. Note

19-6 Lecture 19: Expander Graphs

|α| ≤ ‖x‖1. With a bit of algebra we arrive at our bound:

‖Z · J‖ = ‖Z · J · x‖2
= ‖Z · α · 111‖2
= |α| · ‖Z · 111‖2

= |α| ·
√
β√
n

≤ ‖x‖1 ·
√
β√
n

≤ ‖x‖2
√
β

=
√
β

Then because
√
β ≤ 1 and λ2(A) ≤ λ, we have ‖Z ·A‖ ≤ (1− λ) ·

√
β + λ. In conclusion,

Pr[v0, . . . , vk ∈ B] = ‖(Z ·A)k · Z · 111‖2 ≤ ((1− λ) ·
√
β + λ)k ·

√
β√
n
≤ ((1− λ) ·

√
β + λ)k.

References

AB09 S. Arora and B. Barak, Computational Complexity: A Modern Approach, Cambridge University Press,
New York, NY, USA, 2009.

