Lecture 19 (Mar 19): Expander Graphs

Lecturer: Zachary Friggstad
Scribe: Noah Weninger

19.1 Definitions

Definition 1 Say G is a (n, d, λ)-expander if

- The number of nodes is n.
- G is d-regular. That is, every vertex touches exactly d edges. The graph may include parallel edges and loops, but loops only count once towards d.
- $\left|\lambda_{2}\right| \leq \lambda$ where $\lambda_{1}, \ldots, \lambda_{n}$ are the eigenvalues of G with $\left|\lambda_{1}\right| \geq \cdots \geq\left|\lambda_{n}\right|$.

We will see this definition is most useful when $\lambda<1$ and is independent of n.

Definition 2 Say $\left\{G_{n}\right\}_{n \geq 1}$ is a family of (d, λ)-expanders if each G_{n} is a (n, d, λ)-expander.

People frequently use the term "expander graph" to mean a graph from such a family for some constant d and some $\lambda<1$.

Definition 3 Say $\left\{G_{n}\right\}_{n \geq 1}$ is a strongly explicit family of (d, λ)-expanders if, given n and some vertex $v \in[n]$, we can compute the neighbours of v in G_{n} in $\operatorname{polylog}(n)$ time (i.e. polynomial in the logarithm of n).

19.2 Random walks in expanders

There are quite a few "random walks in expanders" results that are useful for different applications. We will cover one that is particularly useful for applications we will discuss shortly.

Theorem 1 Let $G=(V ; E)$ be a (n, d, λ)-expander. Consider a random walk v_{0}, \ldots, v_{k} where

- v_{0} is uniformly chosen node of G.
- v_{i+1} is a random neighbour of v_{i}, selected by picking an edge incident to v_{i} uniformly at random. Note that v_{i} may equal v_{i+1} if the chosen edge is a loop.

For any $B \subseteq V$, let $\beta=\frac{|B|}{|V|}$. Then the probability that the random walk stays in B satisfies

$$
\operatorname{Pr}\left[v_{0}, \ldots, v_{k} \in B\right] \leq((1-\lambda) \cdot \sqrt{\beta}+\lambda)^{k}
$$

For example, say $\beta=\frac{1}{2}$. Then there is a 50% chance that $v_{0} \in B$. If G wasn't an expander, then there might be only a single edge connecting B to $V-B$, so there is a high probability of staying in B after a single step. But in an expander graph, the number of edges leaving B is linear in $|B|$, so, intuitively, there is a constant probability of leaving the set in each step. This is not a precise statement, but what is true is that if $\lambda, \beta<1$, then the probability of staying in B decreases geometrically with the length of the walk.

This theorem will be proved later on, but first we'll motivate it with a few applications.

19.3 Applications

19.3.1 Error reduction rates for RP

Take $L \in \mathbf{R P}$ and let M be a PTM using $r(n)$ random bits to decide L. So $\forall x$,

- $x \in L \Rightarrow \operatorname{Pr}_{y \sim\{0,1\}^{r(|x|)}}[M(x, y)=$ ACCEPT $]=1$
- $x \notin L \Rightarrow \operatorname{Pr}_{y \sim\{0,1\}^{r(|x|)}}[M(x, y)=\mathrm{ACCEPT}] \leq \frac{1}{2}$

Recall that we could drive down the probability of accepting a "No" instance to 2^{-k} by independently repeating $M(x) k$ times. However, for k repetitions, this method requires $k \cdot r(n)$ random bits. Here, we will show that we can improve this to only require $O(k)+r(n)$ random bits.

Let G be a strongly explicit $\left(2^{r(|x|)}, d, \lambda\right)$-expander graph where d is a constant and $\lambda<1$. We haven't yet seen how to construct one, but let's assume we have such a graph (represented implicitly). Notice there is a one-to-one correspondence between the nodes of G and all strings $y \in\{0,1\}^{r(|x|)}$. We can then use G to decide $x \in L$ with the following procedure:

Let y_{0}, \ldots, y_{k} be a random walk in G as in the statement of Theorem 1.
Accept iff $\forall 0 \leq i \leq k, M\left(x, y_{i}\right)=$ ACCEPT.
Proof. Creating the random walk takes $O(k)+r(n)$ random bits: $r(n)$ to select v_{0}, then $k \cdot O(\log d)=O(k)$ bits 1 to select a neighbour of v_{i} for all $0 \leq i<k$. Since G is strongly explicit, computing neighbouring vertices only takes polylogarithmic time in $2^{r(n)}$, which is polynomial in n. Let $B_{x}=\left\{y \in\{0,1\}^{r(|x|)}: M(x, y)=\mathrm{ACCEPT}\right\}$. The procedure decides $x \in L$ because:

- If $x \in L, B_{x}=\{0,1\}^{r(|x|)}$, so $y_{0}, \ldots, y_{k} \in B_{x}$ and therefore all runs of $M\left(x, y_{i}\right)$ are accepted.
- If $x \notin L,\left|B_{x}\right| \leq \frac{1}{2} \cdot\left|\{0,1\}^{r(|x|)}\right|$ so by Theorem 1 ,

$$
\operatorname{Pr}_{y_{0}, \ldots, y_{k}}\left[y_{0}, \ldots, y_{k} \in B_{x}\right] \leq\left((1-\lambda) \cdot \frac{1}{\sqrt{2}}+\lambda\right)^{k}
$$

Since λ is a constant <1, for some constant $c>0$, we have $\left((1-\lambda) \cdot \frac{1}{\sqrt{2}}+\lambda\right)^{k}=2^{-c \cdot k}$. So, we can achieve the same error bound as with independent repetitions using only $O(k)+r(n)$ random bits.

[^0]
19.3.2 Approximability bounds

Claim 1 There exists an $(O(\log n), O(\log n))$-PCP verifier V for $S A T$ such that $\forall \phi$:

- $\phi \in S A T \Rightarrow \exists \pi$ such that $\operatorname{Pr}_{r}[V(\phi, \pi, r)]=1$
- $\phi \notin S A T \Rightarrow \forall \pi$ such that $\underset{r}{\operatorname{Pr}}[V(\phi, \pi, r)] \leq \frac{1}{n^{s}}$ for some constant s that is independent of n.

Proof. This proof is very similar to the previous statement about languages in $\mathbf{R P}$, so here we only present the setup; the result follows almost exactly as before. By the PCP theorem, we know there exists an $(O(\log n), O(1))$ PCP verifier V^{\prime} for SAT such that $\forall \phi$:

- $\phi \in S A T \Rightarrow \exists \pi$ such that $\operatorname{Pr}_{r}\left[V^{\prime}(\phi, \pi, r)\right]=1$
- $\phi \notin S A T \Rightarrow \forall \pi$ such that $\operatorname{Pr}_{r}\left[V^{\prime}(\phi, \pi, r)\right] \leq \frac{1}{2}$

Now, using V^{\prime}, we will construct V.
V expects the same proof π as V^{\prime}. Say V^{\prime} uses $r(n):=c \cdot \log n$ random bits. First, for some $k \in \Theta(\log n), V$ samples r_{0}, \ldots, r_{k} by a random walk in some $\left(2^{r(n)}, d, \lambda\right)$-expander where d is constant and $\lambda<1$. Note such an expander does not need to be strongly explicit, we just need to construct it in poly (n) time. Then V accepts iff $\forall 0 \leq i \leq k, V^{\prime}\left(x, \pi, r_{i}\right)=$ ACCEPT.

Since each call to V^{\prime} queries $O(1)$ bits of the proof, V queries only $O(\log n)$ bits. Note that if V didn't use expanders and just ran V^{\prime} with k independent random bit strings, it would use $\Theta\left(\log ^{2} n\right)$ random bits. But here we only need $O(\log n): r(n)$ bits to select r_{0}, and $\log n \cdot O(\log d)=O(\log n)$ bits to select a neighbour of r_{i} for all $0 \leq i<k$.

The justification for this is just as in the previous proof.

Corollary 1 There exists a constant $\gamma>0$ such that there is no $\frac{1}{n^{\gamma}}$-approximation for max independent set unless $\mathrm{P}=\mathrm{NP}$.

Proof. Consider the following reduction from SAT to max independent set. Let V be a $(c \cdot \log n, q \cdot \log n)-\mathbf{P C P}$ verifier for SAT as in Claim 1 (so c, q and s are all constant). Then build a graph H by:

- Nodes are $(r, b) \in\{0,1\}^{c \cdot \log n} \times\{0,1\}^{q \cdot \log n}$ such that V would accept x given random string r if the queried bits of the proof were b.
- $\left[(r, b),\left(r^{\prime}, b^{\prime}\right)\right]$ is an edge if they disagree on a bit of the proof. Note that b and b^{\prime} cannot be compared as strings: we need to first find all queried proof indices that are common to V with both random strings r and r^{\prime}, then check the corresponding positions in b and b^{\prime} for consistency.

We would like to show that

- $\phi \in \mathrm{SAT} \Rightarrow$ max independent set size in H is $\geq n^{c}$,
- $\phi \notin \mathrm{SAT} \Rightarrow$ max independent set size in H is $\leq n^{c-s}$.

Consider both cases:

- $\phi \in$ SAT. Let π be a proof that is accepted by V for any random string r. Consider $\mathcal{I}=\{(r, b): r \in$ $\{0,1\}^{c \cdot \log n}$ and b agrees with π on the positions queried by V given $\left.r\right\}$. There can only be one vertex in \mathcal{I} for each random string r, because otherwise the two b 's would have to disagree somewhere. Since every b in \mathcal{I} agrees with π, there cannot be an edge between any two vertices in the set. Therefore \mathcal{I} is a maximum independent set in H and it has size $2^{c \cdot \log n}=n^{c}$.
- $\phi \notin$ SAT. Let \mathcal{I} be a max independent set of H. Form a proof string π as follows: $\forall(r, b) \in \mathcal{I}$, set the bits of π queried by V given r according to b. As \mathcal{I} is an independent set, this does not give conflicting values to any bits of π. Any unspecified bit of π can be set arbitrarily. Then

$$
\frac{|\mathcal{I}|}{2^{c \cdot \log n}} \leq \operatorname{Pr}_{r}[V(x, \pi, r)=\mathrm{ACCEPT}] \leq \frac{1}{n^{s}}
$$

where s is as in Claim 1. This follows because the verifier would accept π for each random string r such that $(r, b) \in \mathcal{I}$ for some b. Therefore $|\mathcal{I}| \leq n^{c-s}$.

However, we wanted to our result in terms of the size of the graph, which may differ from n. Let N be the number of nodes in H, so $N \leq n^{c+q}$. Then

$$
\frac{\max \text { ind set in "No" case }}{\text { max ind set in "Yes" case }} \leq \frac{n^{c-s}}{n^{c}}=\frac{1}{n^{s}} \leq \frac{1}{N^{\frac{s}{c+q}}}
$$

Set $\gamma=\frac{s}{c+q}$.

19.4 Proof of the expander random walk result

Before we can show Theorem 1, we need a few fundamentals from linear algebra.

Definition 4 For a square matrix A, the spectral norm is defined as $\|A\|:=\max _{x:\|x\|_{2}=1}\|A \cdot x\|_{2}$.

Informally the spectral norm of A is the maximum scale by which A can stretch any vector. It has a few useful properties: \forall matrices A, B and vectors x,

$$
\begin{aligned}
\|A \cdot B\| & \leq\|A\| \cdot\|B\| \\
\|A+B\| & \leq\|A\|+\|B\| \\
\|A \cdot x\|_{2} & \leq\|A\| \cdot\|x\|_{2} .
\end{aligned}
$$

The proofs of these properties are left as an exercise (assignment 5, exercise 3).
We define 1 to be the n-element column vector of all $\frac{1}{n}$, with n inferred from context. Additionally, define J as the $n \times n$ matrix of all $\frac{1}{n}$. Intuitively, J is the random walk matrix of the n-clique graph where every node has a self loop, so a single random step could lead to any other vertex uniformly at random.

Theorem 2 (Cauchy-Schwarz inequality) For $x, y \in \mathbb{R}^{n},|\langle x, y\rangle| \leq\|x\|_{2} \cdot\|y\|_{2}$.
Proof. $\forall t \in \mathbb{R}, 0 \leq\langle x \cdot t-y, x \cdot t-y\rangle=t^{2} \cdot\|x\|_{2}^{2}-2 t \cdot\langle x, y\rangle+\|y\|_{2}^{2}$. Let us pick t to put the most stress on this inequality: to minimize the quadratic.

If we take $t=\frac{\langle x, y\rangle}{\|x\|_{2}^{2}}$, then we have

$$
\begin{aligned}
0 & \leq \frac{\langle x, y\rangle^{2}}{\|x\|_{2}^{2}}-2 \cdot \frac{\langle x, y\rangle^{2}}{\|x\|_{2}^{2}}+\|y\|_{2}^{2}=\|y\|_{2}^{2}-\frac{\langle x, y\rangle^{2}}{\|x\|_{2}^{2}} \\
0 & \leq\|x\|_{2}^{2} \cdot\|y\|_{2}^{2}-\langle x, y\rangle^{2} \\
\langle x, y\rangle^{2} & \leq\|x\|_{2}^{2} \cdot\|y\|_{2}^{2} \\
|\langle x, y\rangle|^{2} & \leq\|x\|_{2}^{2} \cdot\|y\|_{2}^{2} \\
|\langle x, y\rangle| & \leq\|x\|_{2} \cdot\|y\|_{2}
\end{aligned}
$$

Corollary 2 Define $\|x\|_{1}:=\sum_{i=1}^{n}\left|x_{i}\right|$. Then $\forall x \in \mathbb{R}^{n},\|x\|_{2} \leq\|x\|_{1} \leq \sqrt{n} \cdot\|x\|_{2}$.

Proof. Let $\overline{x_{i}}=\left|x_{i}\right|$. Notice that $n \cdot \mathbf{1}$ is an column vector of ones, so $\|n \cdot \mathbf{1}\|_{2}=\sqrt{n}$. Then $\|x\|_{1}=\langle\bar{x}, n \cdot \mathbf{1}\rangle \leq$ $\|\bar{x}\|_{2} \cdot\|n \cdot \mathbf{1}\|_{2}=\|x\|_{2} \cdot \sqrt{n}$. For the lower bound, observe $\|x\|_{2}^{2}=\sum_{i=1}^{n} x_{i}^{2} \leq\left(\sum_{i=1}^{n} x_{i}\right)^{2}=\|x\|_{1}^{2}$.

Finally, we have all the tools we need to tackle Theorem 1.
Proof of Theorem 1. Recall:

- $G=(V ; E)$ is an (n, d, λ)-expander.
- $v_{0} \sim$ nodes of G.
- $v_{i+1} \sim$ neighbours of v_{i} by picking a random edge uniformly.

We want to to show $\forall B \subseteq V, \operatorname{Pr}\left[v_{0}, \ldots, v_{k} \in B\right] \leq((1-\lambda) \sqrt{\beta}+\lambda)^{k}$, where $|B|=\beta \cdot n$.
Let $Z_{u, v}= \begin{cases}1 & \text { if } u=v \text { and } u \in B \\ 0 & \text { otherwise. }\end{cases}$
For any vector $v, Z v$ will zero out the entries that are not in B. So $\|Z \cdot \mathbf{1}\|_{1}=\beta=\operatorname{Pr}\left[v_{0} \in B\right]$. After taking one random step, we have $\|(Z \cdot A) \cdot Z \cdot \mathbf{1}\|_{1}=\operatorname{Pr}\left[v_{0}, v_{1} \in B\right]$ where A is the random walk matrix of G. By induction, $\left\|(Z \cdot A)^{k} \cdot Z \cdot \mathbf{1}\right\|_{1}=\operatorname{Pr}\left[v_{0}, \ldots, v_{k} \in B\right]$. Note that by Corollary $2,\left\|(Z \cdot A)^{k} \cdot Z \cdot \mathbf{1}\right\|_{1} \leq \sqrt{n} \cdot\left\|(Z \cdot A)^{k} \cdot Z \cdot \mathbf{1}\right\|_{2}$.

Define the notation $\lambda_{2}(A)$ to mean the 2nd largest eigenvalue of A (in absolute value). Recall that J is the uniform random walk matrix. We claim that $A=\left(1-\lambda_{2}(A)\right) \cdot J+\lambda_{2}(A) \cdot C$ where $\|C\| \leq 1$. The proof will be included in the next lecture. For now, we will assume it is true in order to finish the current proof.

Direct calculation shows $\|Z \cdot \mathbf{1}\|_{2}=\frac{\sqrt{\beta}}{\sqrt{n}}$. By the properties of the spectral norm, $\left\|(Z \cdot A)^{k} \cdot Z \cdot \mathbf{1}\right\|_{2} \leq\|Z \cdot A\|^{k}$. $\|Z \cdot \mathbf{1}\|_{2}=\|Z \cdot A\|^{k} \cdot \frac{\sqrt{\beta}}{\sqrt{n}}$. Then, by the claim

$$
\begin{aligned}
\|Z \cdot A\| & =\left\|Z \cdot\left(1-\lambda_{2}(A)\right) \cdot J+Z \cdot \lambda_{2}(A) \cdot C\right\| \\
& \leq\left(1-\lambda_{2}(A)\right) \cdot\|Z \cdot J\|+\lambda_{2}(A) \cdot\|Z \cdot C\|
\end{aligned}
$$

Since $\|C\| \leq 1$, we have $\|Z \cdot C\| \leq 1$. Now we need to show $\|Z \cdot J\| \leq \sqrt{\beta}$. Let x be a unit vector that maximizes $\|Z \cdot J \cdot x\|_{2}$, so that $\|Z \cdot J \cdot x\|_{2}=\|Z \cdot J\|$. Then $J \cdot x=\alpha \cdot \mathbf{1}$ for $\alpha=\sum_{v} x_{v}$, because all rows of J are $\mathbf{1}^{\top}$. Note
$|\alpha| \leq\|x\|_{1}$. With a bit of algebra we arrive at our bound:

$$
\begin{aligned}
\|Z \cdot J\| & =\|Z \cdot J \cdot x\|_{2} \\
& =\|Z \cdot \alpha \cdot \mathbf{1}\|_{2} \\
& =|\alpha| \cdot\|Z \cdot \mathbf{1}\|_{2} \\
& =|\alpha| \cdot \frac{\sqrt{\beta}}{\sqrt{n}} \\
& \leq\|x\|_{1} \cdot \frac{\sqrt{\beta}}{\sqrt{n}} \\
& \leq\|x\|_{2} \sqrt{\beta} \\
& =\sqrt{\beta}
\end{aligned}
$$

Then because $\sqrt{\beta} \leq 1$ and $\lambda_{2}(A) \leq \lambda$, we have $\|Z \cdot A\| \leq(1-\lambda) \cdot \sqrt{\beta}+\lambda$. In conclusion,

$$
\operatorname{Pr}\left[v_{0}, \ldots, v_{k} \in B\right]=\left\|(Z \cdot A)^{k} \cdot Z \cdot \mathbf{1}\right\|_{2} \leq((1-\lambda) \cdot \sqrt{\beta}+\lambda)^{k} \cdot \frac{\sqrt{\beta}}{\sqrt{n}} \leq((1-\lambda) \cdot \sqrt{\beta}+\lambda)^{k}
$$

References

AB09 S. Arora and B. Barak, Computational Complexity: A Modern Approach, Cambridge University Press, New York, NY, USA, 2009.

[^0]: ${ }^{1}$ If d is not a power of 2 there is a subtlety in how to do this with coin flips. We could (implicitly) add $\leq d$ loops to each vertex so each vertex has degree 2^{k}. It is easy to see the graph remains an expander: the parameter λ would change to $\frac{d}{2^{k}} \cdot \lambda+\frac{2^{k}-d}{2^{k}} \cdot 1<1$ as the new random walk matrix is the corresponding averaging of G 's random walk matrix and the identity matrix I.

