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18.1 Goldreich-Levin ’89

In the last lecture, we have introduced Goldreich-Levin Theorem, and gave a short proof of it, in this lecture,
the proof of why the Goldreich/Levin algorithm works will be revised.

Recall that we would like to successfully invert f(x) for x ∈ {0, 1}n such that Pr
r

[A(f(x), r) = x ◦ r] ≥ 1
2 + 1

2nc .

Here we provide such an algorithm :

Algorithm 1 Algorithm Recovering ’good’ x Given y=f(x)

Input: y, which is equal to f(x) for an unknown x.
Output: x such that f(x) = f(x) (or nothing, if it fails).

m← 200 · n2c+1 (Could also be other polynomials of degree ≥ 2c+ 1)
k ← number of bits to write m
• Sample s0, ..., sk−1 ∼ {0, 1}n
• Form rj =

∑
i∈Tj

si(mod 2) for ∀1 ≤ j ≤ m, note that rj are independent

• ’Guess’ x ◦ si for ∀1 ≤ i ≤ k − 1
• For each i, let yj =

∑
i∈Tj

x ◦ sj , note that for the right guess, this is x ◦ rj

• Let y
′

j = A(f(x), rj ◦ ei)
for each i, 1 ≤ i ≤ n do
xi ← majority of

1≤j≤m
yj , y

′

j

end for
if x = y then

output x
end if

In the algorithm, Tj is the set of bit positions i such that bit i of j is 1. By ‘guess’, we mean that all 2k ≤ 2m
possibilities for the different values of all x ◦ si should be enumerated and the rest of the algorithm should run
for each guess, breaking only if an iteration successfully inverts f(x) (i.e. f(x) = f(x)).

We will show that the algorithm would successfully invert a x such that Pr
r

[A(f(x), r) = x ◦ r] ≥ 1
2 + 1

2nc with

high probability.

Claim 1 ∀1 ≤ i ≤ n, Pr[xi 6= xi] ≤ 1
50·n .

(Note that 50 can be any other constant if we change m in the algorithm)

Proof. Note that x ◦ rj = x ◦
(∑

i∈Tj
si

)
is known when we guess all x ◦ si properly. So xi 6= xi only if the

majority of j’s have A(y, rj ⊕ ei) 6= (rj ⊕ ei) ◦ x.
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Fix i, let Yj ∈ {0, 1} be the random vector such that

Yj =

{
1 ifA(y, rj ⊕ ei) = (rj ⊕ ei) ◦ x
0 ifA(y, rj ⊕ ei) 6= (rj ⊕ ei) ◦ x

Then for Y =
∑m
j=1 Yj , E[Y ] ≥ m

2 + m
2·nc since the probability of successfully inverting x is ≥ 1

2 + 1
2nc ,

V ar[Y ] =

m∑
j=1

V ar[Yj ] because rj are pairwise independent (18.1)

≤ m as Yj ∈ {0, 1},∀j (18.2)

Note that for all i,

Pr[xi 6= xi] ≤ Pr[Y ≤ m

2
] (18.3)

≤ Pr[Y ≤ E[Y ]− m

2 · nc
] (18.4)

≤ Pr[|Y − E[Y ]| ≤
√
m

2 · nc
·
√
m] (18.5)

≤ Pr[|Y − E[Y ]| ≤
√
m

2 · nc
·
√
V ar[Y ]] (18.6)

≤ 4 · n2c

m
(18.7)

=
4 · n2c

200 · n2c+1
(18.8)

=
1

50n
(18.9)

So by the union bound, Pr[∃i, xi 6= xi] ≤
∑n
i=1

1
50n = 1

50 . The algorithm successfully finds x such that f(x) = y
with probability ≥ 49

50 . (Note that this probability can be other constant or even 1− 1/poly(n) if we change m
in the algorithm).

Claim 2 If f is a one-way permutation, then for all polynomial `(n), G(x, r) = (r, f `(n)(x) ◦ r, f `(n)−1(x) ◦
r, f `(n)−2(x) ◦ r, ..., f(x) ◦ r) is a pseudorandom generator with stretch `(2n) + 2n taking inputs x, r ∈ {0, 1}n.

Proof. By Yao’s Lemma, it sufficies to show that G is unpredictable, i.e., there is no algorithm B that has:
Pr

x,r∼{0,1}n
i∼[l(n)]

[B(1n, i, r, f l(x) ◦ r, ..., f i+1(x) ◦ r) = f i(x) ◦ r] ≥ 1
2 + 1

nd for some d.

We prove by contradiction, suppose such B exists, then we can define an algorithm B
′

to predict x ◦ r given y
= f(x) and r.

Algorithm 2 Algorithm B
′

to predict x ◦ r given y = f(x), r

• Sample i ∼ [l]
• Output B(1n, i, r, f l−i−1(y) ◦ r, ..., f(y) ◦ r, y ◦ r)

Note that for a random i, for x, r ∼ {0, 1}n, the distribution over f l−i−1(y) ◦ r, ..., y ◦ r is the same as the
distribution over f l(x

′
) ◦ r, ..., f i+1(x

′
) ◦ r.

If we sample x
′
, r ∼ {0, 1}n, set x = f i(x

′
), then B can predict f i(x

′
) ◦ r with probability ≥ 1

2 + 1
nd ,

so equivalently B
′

can predict x ◦ r given y=f(x) with probability ≥ 1
2 + 1

nd , contradicting Goldreich-Levin
Theorem.
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18.2 Spectral Graph Theory

We are now entering the “topics” half of the class, having covered most of the core material in the first part of
the textbook. Our first topic is the use and construction of expander graphs.

18.2.1 A Quick Review of Linear Algebra

The results we review are standard from an intermediate undergraduate course on linear algebra. A couple are
proven here just for clarity and to get us “warmed up” to these sorts of arguments. 1. For a matrix A, λ is an
eigenvalue of A if Ax = λx for some x 6= 0.

2. If A is a symmetric real matrix, then
(a) All eigenvalues of A are real.
(b) The multiplicity of an eigenvalue as a root of the characteristic polynomial det(A−x·I) equals the dimension
of its eigenspace {x : Ax = λx}.
(c) The total multiplicity of all eigenvalues is n.
(d) 〈x, x′〉 = 0 if x, x

′
are eigenvectors of A for different eigenvalues.

proof: Since x, x
′

are eigenvectors of A for different eigenvalues, then there exists λ, λ
′

such that

λ 6= λ
′
; Ax = λx; Ax

′
= λ

′
x
′

Hence λ · 〈x, x′〉 = 〈Ax, x′〉 = 〈x,Ax′〉 = 〈x, x′〉 · λ′

Since λ 6= λ
′
, then 〈x, x′〉 = 0.

(e) More generally, we can pick an orthonormal basis of eigenvectors. That is, writing λ1, λ2, ..., λn as all
eigenvalues that can pick eigenvectors x1, ..., xn such that
i. Axi = λi · xi
ii.

〈xi, xj〉 =

{
0 i 6= j

1 i = j

18.2.2 Random Walks

In this section, we’ll mainly talk about d-regular graph and properties of eigenvalues of its random walk matrix.

Consider the undirected graph shown in figure 18.1, imagine that you are standing at any vertex, if there are k
edges incident to that vertex, assume the probability that you are going to move along any of those k edges are
all 1

k .
Then an random walk matrix A can be defined as : Aij = Pr[A step from vi moves to vj ],∀1 ≤ i, j ≤ n. This
is just the adjacency matrix normalized so all rows sum to 1. e.g., the random walk matrix for the graph 18.1 is

1/3 1/3 1/3 0
1/3 1/3 0 1/3
1/3 0 0 2/3

0 1/3 2/3 0
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Figure 18.1: A 3-regular graph

Definition 1 (d-regular graph) A graph G is a d-regular graph if all nodes in G are endpoints of exactly d
edges.

We consider graphs with loops: a loop contributes exactly 1 to the degree of the node even though we often
draw it with two endpoints touching the node. So graph 18.1 is a 3-regular graph.

If an undirected graph is d-regular, then its random walk matrix must be symmetric. This is simply because
the random walk matrix A is then 1

d times the adjacency matrix and the adjacency matrix of an undirected
graph is symmetric.

We now explore basic properties of the random walk matrix A as they related to the structure of the graph G.

Claim 3 Let p ∈ [0, 1]|V | be such that
∑|V |
v=1 pv = 1 (a probability distribution over V ). Then Ak · p is the

probability distribution over V after sampling u ∼ p and taking a random walk of length k starting from u.

Proof. Just from the definitions.

Claim 4 Suppose A is a random walk matrix of a d-regular graph, then |λ| ≤ 1 for ∀ eigenvalues λ of A

Proof. Pick any eigenvalue λ of A, then there is some x 6= 0 that Ax = λ · x.
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Pick v = arg max
u

xu, then

|λ| · |xu| = |λ · xu| (18.10)

= |(A · x)u| (18.11)

= |
∑
v

Auv · xv| (18.12)

≤
∑
v

Auv · |xv| (18.13)

≤ |xu| ·
∑
v

Auv (18.14)

= |xu| (18.15)

Note that xu 6= 0, so |λ| ≤ 1.

Claim 5 For the random walk matrix A of a d-regular graph, multiplicity of 1 as an eigenvalue equals to number
of connected components in graph.

Proof.

1. multiplicity of 1 as an eigenvalue ≥ number of connected components :

Let C ⊆ V be a connected component, let

xCv =

{
1 v ∈ C
0 v /∈ C

In the graph shown in figure 18.2, there are two connected components, BLUE and RED, then by definition,

A =


0 1/2 1/2 0 0 0

1/2 0 1/2 0 0 0
1/2 1/2 0 0 0 0

0 0 0 0 1/2 1/2
0 0 0 1/2 0 1/2
0 0 0 1/2 1/2 0

 xBLUE =


1
1
1
0
0
0

 xRED =


0
0
0
1
1
1

 .

Then for any connected component C,

AxC =


a1 ◦ xC
a2 ◦ xC
...

an ◦ xC

 .

Where ai is the i-th row-vector of A (recalling A is symmetric). Note that for all i, ai◦xC =
∑n
v=1 aiv ·xCv =∑

v∈C aiv = xCi (Since C is a connected component, if i is in C, then the total probability of stepping
from i to v ∈ C is 1; If i is not in C, the probability of stepping from i to v ∈ C is 0).
Hence AxC = xC for any connected components C, so the multiplicity of 1 as an eigenvalue ≥ number of
connected components.

2. number of connected components = multiplicity of 1 as an eigenvalue :
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Figure 18.2: Connected Components BLUE and RED

Let x be such that Ax = x. We claim for u, v in the same component that xu = xv. To see this, consider
a component C and pick v = arg max

u∈C
|xu|. If xv = 0 there is nothing to show, otherwise

|xv| = |(A · x)v| (18.16)

= |
∑
u

Auv · xu| (18.17)

≤
∑
u

Auv · |xu| (18.18)

≤ |xv| ·
∑
v

Auv (18.19)

= |xv| (18.20)

So (18.17) = (18.18) = (18.19), then |xu| = |xv| for every neighbour u of v for the second bound to hold
with equality. But then the first bound holds with equality only if xu = xv (without absolute values).
Then by induction on the distance of a node u from v, every u in the same component as v has xu = xv.

So x is constant across any connected component meaning it can be represented as a linear combination
of all eigenvectors of the form xC for the various connected components C. That is, the eigenspace
for eigenvalue 1 has {xC : C a component of G} as a basis. Hence number of connected components =
multiplicity of 1 as an eigenvalue.

Claim 6 Let G be a connected, d-regular graph with random walk matrix A, then -1 is an eigenvalue if and
only if G is bipartite.

Proof.

• G is bipartite ⇒ -1 is an eigenvalue :
Let L,R ⊂ V be the two parts, then define a vector x s.t.

xv =

{
1 v ∈ R
−1 v ∈ L
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Then for all 1 ≤ i ≤ n, (Ax)i = ai ◦ x =
∑n
v=1 aiv · xv =

∑
v∈R aiv −

∑
v∈L aiv = −xi (Since if i ∈ R,

aiv = 0 for all v ∈ R, and aiv = 1 for some v ∈ L, so
∑
v∈R aiv −

∑
v∈L aiv = −1 = −xi; For the case

i ∈ L, similar).

• -1 is an eigenvalue ⇒ G is bipartite :
Suppose there is some vector x 6= 0 such that Ax = −x. We verify that L = {v : xv ≤ 0}, R = {r : xr > 0}
is a bipartition. Let v have the largest value |xv|. By negating x if necessary xv > 0 as well. One one
hand

−xv = (Ax)v =
∑
u

Auvxu.

On the other hand, xv =
∑
uAuvxv, so

∑
uAuvxu =

∑
uAuv · (−xv). We know xu ≥ −xv by our choice

of v. If any neighbour u of v has xu > −xv then equality in this sum could not hold as all entries of A are
nonnegative and Auv > 0 for a neighbour u of v. So every neighbour u of v has xu = −xv. Continuing in
this way, we see that any node u with distance i from v has xu = (−1)i · xv. Then essentially the same
argument also shows for every edge uw that xu = −xw. So L and R is a bipartition: no edge has both
endpoints in one set.

Corollary 1 Let G be connected, nonbipartite, d-regular graph with eigenvalues λ1, ..., λn such that |λ1| ≥ |λ2| ≥
... ≥ |λn|. Then λ1 = 1 and |λ2| < 1.

Proof. Since G only has 1 connected component, by Claim 4, multiplicity of 1 as eigenvalue is 1. Since G is
not bipartite, by Claim 5, -1 is not an eigenvalue. Then by Claim 3, λ1 = 1 and |λ2| < 1

18.2.3 Rayleigh Quotient

Before we introduce Cheegers’ Inequality, we’ll first introduce arguments based on Rayleigh Quotients which
will be used a couple of times in the lectures.

Claim 7 If A is a symmetric real matrix, λ1, ..., λn are eigenvalues of A such that |λ1| ≥ |λ2| ≥ ... ≥ |λn|,
then for ∀x ∈ Rn, that is orthogonal to the eigenspaces of λ1, . . . , λk, we have |〈Ax, x〉| ≤ |λk+1| · ||x||2, i.e, the
Rayleigh Quotient R(A, x) ≤ |λk+1|

Proof. Let y1, . . . , yn be an orthonormal collection of vectors where yi is an eigenvector for λ1. Write
x =

∑n
j=k+1 αj · yj (we can do that because x is orthogonal to eigenspaces for λi, i ≤ k). Then

|〈Ax, x〉| = |〈A ·
∑
j

αj · yj ,
∑
j

αj · yj〉| (18.21)

= |
∑
j,j′

αjαj′ · 〈Ayj , yj′ 〉| (18.22)

= |
∑
j,j′

αjαj′ · 〈λjyj , yj′ 〉| (18.23)

= |
∑
j

λjα
2
j | (18.24)

≤
∑
j

|λk+1| · α2
j (18.25)

= |λk+1| · ||x||2 (18.26)



18-8 Lecture 18: Cryptography & Spectral Graph Theory

The final bound follows because ||x||2 =
∑
j α

2
j .

18.2.4 Cheegers’ Inequality

Cheegers’ inequality relates the spectral gap to edge expansion, we’ll first introduce the notation of edge expan-
sion.

For a d-regular graph G, define λ(G) = |λ2|, where λ1, ..., λn s.t. |λ1| ≥ |λ2| ≥ ... ≥ |λn| are eigenvalues of the

random walk matrix of G. Let S ⊂ V , |S| ≤ n
2 , the sparsity of the cut S is |δ(S)||S| , where δ(S) is the number of

edges exiting S. Let the edge expansion h(G) = min
S⊂V,|S|≤n

2

|δ(S)|
|S| , i.e, h(G) is a cut of minimal sparsity.

Cheegers’ inequality includes a lower bound and upper bound for edge expansion based on λ(G), we will intro-
duce and prove the easier part (lower bound) of Cheegers’ Inequality.

Theorem 1 Easier Part of Cheegers’ Inequality
h(G) ≥ d

2 · (1− λ(G))

Proof. Let S ⊂ V , |S| ≤ n
2 have h(G) = |δ(S)|

|S| .

Let vector x be such that

xu =

{
−|V − S| u ∈ S

|S| u /∈ S

Note that x⊥1, where 1 = ( 1
n , ...,

1
n ) (since

∑
u xu = −|V −S| · |S|+ |S| · |V −S| = 0), so 〈Ax, x〉 ≤ λ(G) · ||x||2

by property of Rayleigh Quotient (claim 6).
Let z =

∑
u,v
Au,v · (xu − xv)2, then we have

1. z = 2
d · |δ(S)| · (−|V − S| − |S|)2 = 2 · |δ(S)| · n2/d.

The first equality can be seen because any u, v pair with /∈ δ(S) has its corresponding term cancel so the
sum is really just twice the sum of (|S|+ |V − S|)2 over all edges in δ(S), divided by d.

2.

z =
∑
u,v

Au,v · x2u +
∑
u,v

Au,v · x2v − 2
∑
u,v

Au,vxuxv (18.27)

= ||x||2 + ||x||2 − 2 · 〈Ax, x〉 (18.28)

≥ 2 · ||x||2 − 2 · λ(G) · ||x||2 (18.29)

The second equality can be seen by, say, noting
∑
u,v Au,vx

2
u =

∑
u x

2
u

∑
v Au,v =

∑
u x

2
u = ||x||2 and the

bound follows from a Rayleigh quotient noting x is orthogonal to the all-1 vector.

It is also easy to see ||x||2 = |S| · |V − S| · n. So combine 1 and 2, we have

2

d
· |δ(S)| · n2 ≥ (1− λ(G) · |S| · |V − S| · n (18.30)

|δ(S)|
|S|

≥ d(1− λ(G)) · |V − S|
n

(18.31)

≥ d

2
· (1− λ(G)) (18.32)
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where we have used |V − S| ≥ n/2.
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