
CMPUT 675: Computational Complexity Theory Winter 2019

Lecture 17 (March 12, 2019): Cryptography
Lecturer: Zachary Friggstad Scribe: Joseph Meleshko

17.1 Chebyshev’s Inequality

Recall we are proving Yao’s lemma, that a function is a pseudorandom generator if and only if it is unpredictable.
Before getting to the details, we start by introducing another concentration bound. It is not as strong as Chernoff
bounds but it applies in more general settings as will see.

Lemma 1 For a random variable X with E[X] = µ and Var[X] = E[(X − µ)2] = σ2

Pr[|X − µ| ≥ k] ≤ σ2

k2
, for any k > 0 (17.1)

Proof. We apply Markov’s Inequality applied to the random variable (X − µ)2

Pr[(X − µ)2 ≥ k2] ≤ E[(X − µ)2]

k2
(17.2)

Taking the square root of both sides to get the inequality we want (as the bound amounts to the same event):

Pr[|X − µ| ≥ k · σ] ≤ 1

k2
(17.3)

Recall a family of variables is said to be pairwise independent if any two of them are independent. We en-
countered such random variables when we discussed hashing. The following simple claim shows we can apply
Chebyshev’s inequality to sums of pairwise independent random variables and use the sum of the individual
variances instead of the variance of the sum.

Lemma 2 Let X1, X2, ..., Xn be pairwise independent random variables over {0, 1}. Let X = Σn
i=1Xi . Then

Var[X] =
∑n

i=1 Var[Xi].

Proof. Say each Xi has E[Xi] = µi and say E[X] = µ. Then µ =
∑

i µi. Also, by pairwise independence we
have E[XiXj] = µi · µj for i 6= j and because each Xi is boolean we always have X2

i = Xi so E[X2
i] = µi.

17-1

17-2 Lecture 17: Cryptography

Note Var[Xi] = E[X2
i]− E[Xi]

2 = µi − µ2
i . So,

Var[X] = E[X2]− E[X]2

=
∑
i,j

E[XiXj]− E[
∑
i

µi]
2

=
∑
i

µi +
∑
i 6=j

µi · µj −

(∑
i

µi

)2

=
∑
i

µi −
∑
i

µ2
i

=
∑
i

Var[Xi]

Though, this observation will not be used until next lecture.

17.2 Cryptography

Theorem 1 (Yao 82’) Given a polynomial-time computable function G : {0, 1}∗ → {0, 1}∗, if G is unpre-
dictable, then G is pseudorandom.

Proof.

Assume that we have an unpredictable function G with stretch `(n) that is not pseudorandom. This means
that there exists a polynomial time, probabilistic Turing machine A and a constant c ≥ 0 such that:

Pr
r∼{0,1}n

[A(G(r)) = 1]︸ ︷︷ ︸
1

− Pr
r′∼{0,1}`(n)

[A(r′) = 1]︸ ︷︷ ︸
2

≥ 1

nc
, for ∞-ly many n. (never becomes negligible). (17.4)

The original definition of pseudorandom had absolute values on the left side of the above expression, but we
may assume they are not there by negating the output of A, if necessary.

We define a polynomial time probabilistic Turing machine B such that B(1n, i, y1, y2, ..., yi−1):

• Samples zi, zi+1, ..., zn ∼ {0, 1} independently.

• Outputs zi if A(y1, y2, ..., yi−1, zi, zi+1, ..., z`(n)) = 1, otherwise outputs 1− zi.

We will use this machine B that invokes A with a mix of pseudorandom and truly random bits to show that:

Pr
x∼{0,1}n

i∼{1,2,...,`(n)}

[B(1n, i, G(x)1, G(x)2, ..., G(x)i−1) = G(x)i] ≥
1

2
+

1

nc · `(n)
(17.5)

Which demonstrates that G is not unpredictable. So, for 0 ≤ i ≤ `(n), let Di be a distribution over {0, 1}`(n)
sampled by:

• x ∼ {0, 1}n

Lecture 17: Cryptography 17-3

• z ∼ {0, 1}`(n)

• output the vector (G(x)1, G(x)2, ..., G(x)i, zi+1, zi+2, ..., z`(n))

Let pi = Pr
r∼Di

[A(r) = 1]. By definition, p`(n) = 1 and p0 = 2 as defined above. This means:

p`(n) − p0 ≥
1

nc
(17.6)

p`(n) − p0 =

`(n)∑
i=1

pi − pi−1 (17.7)

E
i∼{1,2,...,`(n)}

[pi − pi−1] ≥ 1

nc · `(n)
(17.8)

We will show

∀i, Pr
x∼{0,1}

[B(1n, i, G(x)1, G(x)2, ..., G(x)i−1) = G(x)i] ≥
1

2
+ (pi − pi−1). (17.9)

For a given x and z, B predicted G(x)i correctly if:

• 1̄ := A(G(x)1, G(x)2, ..., G(x)i−1, zi, zi+1, ..., z`(n)) = 1 and G(x)i = zi

or

• 2̄ := A(G(x)1, G(x)2, ..., G(x)i−1, zi, zi+1, ..., z`(n)) = 0 and G(x)i 6= zi

Observe that conditioning Di−1 on G(x)i = zi yields the same distribution as Di. To see this, observe that
an alternative way to sample from Di is to first have it sample from Di−1 (but remember the whole vector x)
and then replace zi with G(x)i. Since zi is totally independent of all other choices then this is just the same as
conditioning Di−1 on zi = G(x)i.

So,

Pr
x,z

[
1̄
]

= Pr[G(x)i = zi] · Pr[A(G(x)1, G(x)2, ..., G(x)i−1, zi, zi+1, ..., z`(n)) = 1 | G(x)i = zi]︸ ︷︷ ︸
pi

(17.10)

=
1

2
· pi (17.11)

Similarly,

Pr
x,z

[
2̄
]

=
1

2
· (1− Pr[A(G(x)1, G(x)2, ..., G(x)i−1, zi, zi+1, ..., z`(n)) = 1 | G(x)i 6= zi])︸ ︷︷ ︸

?

(17.12)

but we do not have a nice simplification for ? just yet.

17-4 Lecture 17: Cryptography

We now observe that,

pi−1 = Pr
r∼Di

[A(r) = 1] (17.13)

= Pr
x,z

[A(G(x)1, G(x)2, ..., G(x)i−1, zi, zi+1, ..., z`(n)) = 1︸ ︷︷ ︸
†

] (17.14)

=
1

2
· Pr[† | zi = G(x)i] +

1

2
· Pr[† | zi 6= G(x)i] (17.15)

=
1

2
· pi +

1

2
· Pr[† | zi 6= G(x)i] (17.16)

1

2
· pi +

1

2
· (1− ?). (17.17)

∴ For each given i,

Pr
x

[B predicts G(x)i given G(x)1, G(x)2, ..., G(x)i−1] =
1

2
· pi +

1

2
· ? (17.18)

=
1

2
+ (pi − pi−1) by the above observation (17.19)

Therefore, G is not unpredictable which is a contradiction. So if G is an unpredictable function, then it is
pseudorandom.

As mentioned in the lectures, we cannot cover why the existence of one-way functions in general imply the
existence of a pseudorandom generator. But we can prove it under the slightly stronger assumption that one-
way permutations exist: functions f : {0, 1}∗ → {0, 1}∗ that are one-to-one and satisfy |f(x)| = |x| for all
x.

To do this, we start with the following result which will allow us to extend a random pair (x, r) by a single bit
and remain unpredictable.

Theorem 2 (Goldreich-Levin ’89) If f is a one-way permutation, for any polynomial time, probabilistic
Turing machine A, there exists a negligible function ε(n) such that:

Pr
x,r∼{0,1}n

[A(f(x), r) = x ◦ r] ≤ 1

2
+ ε(n),∀n (17.20)

Proof. Suppose not, then there exists a polynomial time, probabilistic Turing machine A such that,

Pr
x,r∼{0,1}n

[A(f(x), r) = x ◦ r] ≥ 1

2
+

1

nc
, for ∞-ly many n. (never becomes negligible) (17.21)

Fix such an n. We will call an x “good” if,

Pr
r∼{0,1}n

[A(f(x), r) = x ◦ r] ≥ 1

2
+

1

2 · nc
(17.22)

We only need to argue about our “good” x since the fraction of x that are good is 1
2·nc . To see this, let β be the

fraction of strings in {0, 1}n that are good. For every bad x, the probability (over r) the algorithm computes
x ◦ r is at most 1

2 + 1
2·nc . For every good x, the probability is trivially bounded by 1. Therefore,

1

2
+

1

nc
≤ Pr

x,r∼{0,1}n
[A(f(x), r) = x ◦ r] ≤ (1− β) · 1

2 · nc
+ β · 1 ≤ β +

1

2 · nc
.

Lecture 17: Cryptography 17-5

Thus, β ≥ 1
2·nc .

Our intuition is that for a given x, if,

Pr
r∼{0,1}n

[A(f(x), r) = x ◦ r] = 1 (17.23)

then we can just set r to ei (standard basis vectors) and compute A(f(x), ei) which is always x ◦ ei = xi (ith
bit of x) so we can find x exactly by going through each ei. Of course, this is too strong of an assumption. We
first relax it to see what happens if we have a really high probability of computing r ◦ x.

So, what if

Pr
r∼{0,1}n

[A(f(x), r) = x ◦ r] =
9

10
. (17.24)

The idea is that we can still recover x ◦ ei = xi with very high probability using the “local decoding” trick we
used in the PCP verifier with exponential proof size.

First, by the union bound on the probability that either run of A below does not give the correct answer we see

Pr
z∼{0,1}n

[A(f(x), z) = x ◦ z and A(f(x), z ⊕ ei) = x ◦ (z ⊕ ei)] ≥ 8

10
(17.25)

If so, xi = (x ◦ z) + (x ◦ (z⊕ ei)) = x ◦ (z⊕ z⊕ ei) = x ◦ ei = xi. Since the probability is a constant factor larger
than 1/2, we can repeat the protocol multiple times and take the majority to compute xi correctly with very
high probability using Chernoff bounds. High enough so that if we repeat this for each i then we recover all xi
with high probability.

This doesn’t work for our original case since our probability is only slightly above 1
2 so the union bound argument

for the “local decoding” step fails. We now turn to the general case

Pr
r∼{0,1}n

[A(f(x), r) = x ◦ r] ≥ 1

2
+

1

2 · nc
(17.26)

The key idea is that we can, in some sense, “guess” the values of x◦z and still treat x◦(z⊕ei) as being successfully
read with probability 1

2 + 1
2·nc . The way we do this will not have the various z being truly independent, but

they will be pairwise-independent. So querying multiple times with such z and taking the majority will still
successfully determine xi with high probability: we just have to use Chebyshev’s inquality from the start of the
lecture rather than the full power of Chernoff bounds (which do not hold in general if we only assume pairwise
independence of the variables).

We now describe how to sample various z strings in a pairwise-independent fashion that also allows us to “know”
the value of x ◦ z. Let m = 200 · n2c+1 and k be the smallest integer such that m ≤ 2k. (k is the number of bits
to write m).

• Sample s1, s2, ..., sk ∼ {0, 1}n

• ∀1 ≤ j ≤ m, Let Tj = {i | bit i of j is 1} (positions of 1 bits in j)

• zj = Σ
i∈Tj

si (the zi’s can be shown to be pairwise independent)

• Note: ∀x ∈ {0, 1}n, x ◦ zj = Σ
i∈Tj

x ◦ si

Claim 1 The vectors zj , 1 ≤ j ≤ m are pairwise-independent.

17-6 Lecture 17: Cryptography

Proof. Consider j 6= j′ and say bit k is 1 in j and 0 in j′. Consider first sampling all si except for i = k. Then
zj′ is already determined. But then sk, being a completely random string, then means zj will be completely
independent of zj′ .

We will then “guess” each x ◦ si for each 1 ≤ i ≤ k at once. That is, try each of the 2k = poly(m) = poly(n)
guesses for all of these values and run the following for each guess.

• Let yj = Σ
i∈Tj

x ◦ si (we know y because we have guessed x ◦ si)

• Let y′j = A(f(x), zj ⊕ ei)

• For each 1 ≤ i ≤ n, let xi be the majority of yi ⊕ y′i.

We will output x if f(x) = f(x). We can verify if the x we computed works since we can evaluate f(x) and
compare, only halting if we found a vector x that works how we expect.

Next lecture, we will see that x = x with good probability for the iteration where we guessed correctly.

