
CMPUT 675: Computational Complexity Theory Winter 2019

Lecture 15 (Mar. 5): NP ⊆ PCP(poly(n), O(1))
Lecturer: Zachary Friggstad Scribe: Zachary Friggstad

15.1 Preamble

All vectors in this lecture are column vectors unless explicitly indicated otherwise. We associate bits {0, 1} with
integers modulo 2, so for x, y ∈ {0, 1} we have x + y is the sum of these bits mod 2 which is the same as the
XOR of the bits.

Today, we proved the following:

Theorem 1 NP ⊆ PCP(poly(n), O(1))

A major caveat is that the proof itself has exponential size, but it is still far from obvious how to get this result.
Also, if we end up discussing the full proof of the PCP theorem then we need to use the tools developed here.

It suffices to develop such a PCP verifier for some NP-complete language for the usual reason. If L is NP-
complete and L ∈ PCP(poly(n), O(1)) then in fact NP ⊆ PCP(poly(n), O(1)) because we can reduce any
L′ ∈ NP to L in polynomial time and then expect the proof for the verifier to be a proof for the resulting
instance of the L.

For most results in this course concerning how NP relates to other classes, we focussed on studying SAT.
Here, we do something different. We show that QUADEQ ∈ PCP(poly(n), O(1)) where QUADEQ is the
NP-complete problem from the first assignment.

We still recall its definition. In an instance of QUADEQ we have a collection of variables u1, . . . , un over
integers modulo 2 and a collection of m strict quadratic constraints, each of the form

∑
1≤i,j≤n ai,j · ui · uj = b

where each ai,j and b are also integers modulo 2. The goal is to determine if there is some setting to the variables
that causes all constraints to hold.

For example:

u1 · u1 + u2 · u3 = 1

u1 · u2 + u2 · u2 + u3 · u3 = 0

u1 · u1 + u2 · u2 + u3 · u3 = 1

where we understand the equality to be equality of integers modulo 2. The only solution to this system is
u = (1, 0, 0)T . You proved the general problem QUADEQ was NP-complete on the first assignment.

We recast this problem slightly differently. For a vector u ∈ {0, 1}n, let u ⊗ u, the tensor of u with itself, be

the vector in {0, 1}n2

that is indexed by pairs (i, j) where (u⊗ u)(i,j) = ui · uj . It is helpful to visualize it this

15-1



15-2 Lecture 15: NP ⊆ PCP(poly(n), O(1))

way. Say n = 3, then:

u⊗ u =

 u1 · u
u2 · u
u3 · u

 =



u1 · u1
u1 · u2
u1 · u3
u2 · u1
u2 · u2
u2 · u3
u3 · u1
u3 · u2
u3 · u3


.

The horizontal separators are just to help the visualization, the last object is a column vector in {0, 1}9.

The constraints of a QUADEQ instance can then neatly be presented as A · (x⊗ x) = b where A ∈ {0, 1}m×n2

is the “constraint matrix” and b ∈ {0, 1}m is the vector on the right-hand side of all constraints. For example,
the above system could be written as


(1, 1) (1, 2) (1, 3) (2, 1) (2, 2) (2, 3) (3, 1) (3, 2) (3, 3)

1 0 0 0 0 1 0 0 0
0 1 0 0 1 0 0 0 1
1 0 0 0 1 0 0 0 1

 · (u⊗ u) =

 1
0
1

 .

The pairs of indices in the first matrix are just to help visualize our indexing scheme for how pairs of indices
correspond to the various columns.

There is some ambiguity on whether we should put a 1 at entry (i, j) or (j, i) for a quadratic term of the form
xi · xj : it does not matter which one we pick.

15.2 Linear Functions and Encodings

Definition 1 A function f : {0, 1}d → {0, 1} is linear if f(x+ y) = f(x) + f(y) for each x, y ∈ {0, 1}n.

We do not require this explicitly in the discussion, but it is good to think about how linear functions are really
just giving dot products against a fixed vector.

Lemma 1 A function f : {0, 1}d → {0, 1} is linear if and only if there is some u ∈ {0, 1}d such that f(x) = x◦u
for each x ∈ {0, 1}d where we let x ◦ u =

∑d
i=1 ui · ui be the standard dot product (mod 2, of course).

One of the easier exercise questions is to check the details of this claim.

The reason we are studying linear functions is that the PCP verifier for QUADEQ will not expect the proof to
supply just the vector u itself that is supposed to satisfy the system. Rather, it expects the entire truth table
of the function x ◦ u over all possible inputs x. This is exponential in the size of u. But, as we will see, this
allows us to verify the proof probabilistically.

To get some insight into this, consider the following principle that shows how even a slight difference in vectors
can cause their truth-table encodings to differ greatly.

Lemma 2 (Random Subsum Principle) For u 6= v in {0, 1}d, Prx∼{0,1}d [u ◦ x 6= v ◦ x] = 1/2.



Lecture 15: NP ⊆ PCP(poly(n), O(1)) 15-3

Proof. Suppose i is such that ui 6= vi. Pair up vectors in {0, 1}d where x, x′ are paired iff they only differ on
bit i. Then u ◦ x = v ◦ x if and only if x′ ◦ u 6= x′ ◦ v for such a pair {x, x′}.

Thus, u ◦ x and v ◦ x agree on precisely half of the vectors x ∈ {0, 1}d.

15.2.1 Error Correcting Codes

This is your first introduction to using error correcting codes in complexity theory. Unfortunately we do not
have time in this course to explore deeper applications. But let us at least briefly discuss this connection a bit.

Think of the various u ∈ {0, 1}d as messages to be sent. Let WHu ∈ {0, 1}2
d

be the vector consisting of all 2d

values x ◦ u for the various x ∈ {0, 1}d (the notation comes from “Walsh-Hadamard”).

The vector WHu is an “encoding” of u using a tremendous number of extra bits. But the random subsum
principle indicates that if u 6= v, even in just a single bit, then WHu and WHv differ in half of their coordinates.

Furthermore, if y ∈ {0, 1}2d is supposed to represent some WHu but differs in less than 1/4 of its coordinates,
we can still uniquely determine which u that y was supposed to represent. Look for how this idea is being used
implicitly in the proof below.

We also think of WHu as a function over {0, 1}d via WHu(x) = u ◦ x. Note that WHu is a linear function and every
linear function over d bits is of the form WHv for some v.

15.3 Verifying a Proof for QUADEQ

The verifier for a QUADEQ instance with n variables and m constraints in the form A · (u⊗u) = b expects the

proof string π to have length 2n + 2n
2

. The first 2n bits are to be interpreted as the 2n values of some function
f : {0, 1}n → {0, 1} and the last 2n

2

bits are interpreted as a function g : {0, 1}n2 → {0, 1}.

Ideally, the proof string will encode the linear functions f = WHu and g = WHu⊗u where u satisfies the QUADEQ
system. But, of course, the proof may “cheat” in many forms: it may not use a satisfying u, g may encode a
different linear function WHv for v ∈ {0, 1}n2

, or the functions themselves might not even be linear!

We describe how to verify a proof with increasing degrees of skepticism.

15.3.1 Assuming f = WHu and g = WHu⊗u for some u ∈ {0, 1}n

That is, we suppose that f and g correctly encode linear functions over u and its tensor u ⊗ u. But does u
actually satisfy the system?

We show how to query the proof so that if u does satisfy the QUADEQ instance then the verifier always
accepts, but if it does not then the verifier will probably reject (with large constant probability). This might
seem challenging: perhaps u does not satisfy only one constraint. How can we determine this with only a
constant number of queries to the proof string?

The idea is that if we have even a single unsatisfied constraint (under u), then with probability 1/2 summing a
random subset of constraints yields a single constraint that is still not satisfied: the random subsum principle!

Verifier
Repeat 10 times:

• Sample r ∼ {0, 1}m.



15-4 Lecture 15: NP ⊆ PCP(poly(n), O(1))

• Compute y = rT ·A (i.e. sum the rows of A that correspond to indices i with ri = 1).

• If g(yT ) 6= rT · b, reject

Observe the proof string is only queried 10 times.

Now, the query g(yT ) is the same as rT · A · (u ⊗ u) and the check is asking if rT · A · (u ⊗ u) = rT · b. If u
satisfies the system, clearly the verifier does not reject. Otherwise,

Lemma 3 If A · (u⊗ u) 6= b, then the verifier rejects with probability at least 1− (1/2)10.

Proof. Consider a single iteration. Here the vectors A · (u⊗ u) and b are distinct. So by the random subsum
principle, Prr∼{0,1}m [rT ·A · (u⊗ u) 6= rT · b] = 1/2. But g(yT ) = rT ·A · (u⊗ u) by the assumption g = WHu⊗u,
so Prr∼{0,1}m [g(yT ) 6= rT · b] = 1/2.

This only works under the assumption that f and g are linear and g is the Walsh-Hadamard code for the tensor
u⊗ u of the vector u encoded by f . Next, we lift the latter assumption.

15.3.2 Assuming only that f and g are linear

Suppose f = WHu and g = WHv for some u ∈ {0, 1}n and v ∈ {0, 1}n2

. We describe a test that will probably
reject if v 6= u⊗ u.

Verifier
Repeat 10 times:

• Sample r, r′ ∼ {0, 1}n independently.

• Compute1 r ⊗ r′.

• If f(r) · f(r′) 6= g(r ⊗ r′), reject.

Observe the proof string is only queried 30 times.

To see why this works, we rephrase how the tests work. Consider the following two matrices:

• U ∈ {0, 1}n where Ui,j = ui · uj .

• V ∈ {0, 1}n where Vi,j = v(i,j), recalling our convention that {0, 1}n2

is indexed by pairs of indices between
1 and n. So, V is really the same as v except it is arranged as a matrix rather than a flattened-out column
vector.

Lemma 4 For any r, r′ ∈ {0, 1}n, f(r) · f(r′) = rT · U · r′ and g(r ⊗ r′) = rT · V · r′.

Proof. By assumption f = WHu,

f(r) · f(r′) = (r ◦ u) · (r′ ◦ u) =
∑
i,j

ri · ui · uj · r′j = rT · U · r′.

1Coordinate (i, j) of r ⊗ r′ is ri · r′j



Lecture 15: NP ⊆ PCP(poly(n), O(1)) 15-5

The other claim is very similar,

g(r ⊗ r′) = (r ⊗ r′) ◦ v =
∑
(i,j)

(r ⊗ r′)(i,j) · v(i,j) =
∑
i,j

ri · r′j · Vi,j = rT · V · r′.

With this view, if v = u⊗ u then V = U so the test never rejects. Otherwise,

Lemma 5 If v 6= u⊗ u, the test rejects with probability at least 1− (3/4)10.

Proof. Again, consider a single iteration of the verification. If v 6= u⊗ u then V 6= U . Suppose column i of V
and U differ. Then by the random subsum principle, entry i of rT ·U and entry i of rT ·V differ with probability
1/2. Thus,

Prr∼{0,1}n [rT · U 6= rT · V ] ≥ 1/2.

In the event rT · U 6= rT · V , then the random subsum principle again shows

Prr′∼{0,1}n [rT · U · r′ 6= rT · V · r′|rT · U 6= rT · V ] = 1/2.

So the probability that both rT · U 6= rT · V and, then, rT · U · r′ 6= rT · V · r′ is at least 1/4.

The remaining assumption we still have to lift is that f and g are indeed linear functions.

15.3.3 Verifying f and g are (nearly) linear

The test is very simple!

Verifier
Repeat 2000 times:

• Sample x, y ∼ {0, 1}n.

• If f(x+ y) 6= f(x) + f(y), reject.

Similarly, check g(x + y) = g(x) + g(y) with 2000 independent samples of pairs x, y ∼ {0, 1}n2

. In total, this
makes 12000 queries.

If f and g are linear, clearly these tests always pass. But what if they are not? Unfortunately we cannot reject
with great probability if they are very close to linear. This test only rejects those that are somewhat “far” from
being linear.

The following is not obvious, we may see a proof later in the course. For now, we take it at face value. Think of
it as a quantitative generalization of the fact that truly linear functions f are of the form WHu for some vector u.

Theorem 2 Suppose f : {0, 1}d → {0, 1} is such that Prx,y∼{0,1}d [f(x + y) = f(x) + f(y)] ≥ 1 − δ for some

δ < 1/4. Then there is a unique u ∈ {0, 1}d such that Prx∼{0,1}d [f(x) = u ◦ x] ≥ 1− δ.

That u is unique is because if u 6= v then u ◦x 6= v ◦x for half of the different x ∈ {0, 1}d. The existence of such
u is far less obvious.

Definition 2 Say that a function is δ-close to being linear if there is some u such that Prx∼{0,1}d [f(x) =
u ◦ x] ≥ 1− δ.



15-6 Lecture 15: NP ⊆ PCP(poly(n), O(1))

Theorem 2 immediately yields the following.

Corollary 1 If either f or g is not 0.001-close to being linear, then the above test rejects with probability at
least 1− 0.9992000 ≥ 0.85.

15.3.4 Local Decoding

The last tests we described did not reject f or g with good enough probability if they were not linear. Only if
they were somewhat far from being linear.

Suppose f is 0.001-close to WHu and g is 0.001-close to WHv for some u ∈ {0, 1}n and v ∈ {0, 1}n2

. We would like
to continue the other tests described earlier with these linear functions. But we only have access to the “almost
linear” functions f and g.

We use one last trick: local decoding. If we know, say, f is close to being linear then we can in fact get WHu for
any input x with good probability, even those x for which f(x) 6= u ◦ x.

Lemma 6 (Local Decoding) Suppose f is δ-close to a linear function x ◦ u. The for any x ∈ {0, 1}n,
Pry∼{0,1}n [f(y) + f(x+ y) = x ◦ u] ≥ 1− 2δ.

Proof. By the union bound, the probability that at least one of of f(y) or f(x+ y) does not agree with WHu(y)
or WHu(x+ y) (respectively) is at most 2δ. If both agree, we have

f(y) + f(x+ y) = WHu(y) + WHu(x+ y) = y ◦ u+ (x+ y) ◦ u = (x+ y + y) ◦ u = x ◦ u.

Recalling y + y is the zero vector when working with integers modulo 2.

Moral: If we want x ◦ u where u is the unique vector such that f is δ-close to WHu, then we can get this
value with probability at least 1 − 2δ by only making 2 queries to f by choosing y randomly and returning
f(y) + f(x+ y).

Whenever we say to compute a value of f , say f(x), using local decoding we really mean to compute
f(y) + f(x+ y) for a randomly chosen y.

15.4 Putting It All Together

The verifier runs the following tests:

1) For 2000 iterations:

• Test f(x+ y) = f(x) + f(y) for random x, y ∈ {0, 1}n, rejecting if this fails.

• Test g(x+ y) = g(x) + g(y) for random x, y ∈ {0, 1}n, rejecting if this fails.

2) For 10 iterations:

• Test f(r) · f(r′) = g(r ⊗ r′) using local decoding (on both f and g) for random r, r′ ∈ {0, 1}n, rejecting if
this fails.

3) For 10 iterations:



Lecture 15: NP ⊆ PCP(poly(n), O(1)) 15-7

• Test g(yT ) = rT · b using local decoding where y = rT · A for some random r ∈ {0, 1}m, rejecting if this
fails.

Accept if none of the tests rejected.

Note that no test depends on any other so they may all be performed “in parallel”. That is, all different indices
into the proof (i.e. inputs to f and g) can be sampled before any of them are queried. Considering that local
decoding performs two queries each time it is invoked, this procedure makes the following number of queries:

2000 · 6 + 10 · 3 · 2 + 10 · 2 = 12080.

If f = WHu and g = WHu◦u where u satisfies the QUADEQ instance then, as discussed, all tests will pass.

Lemma 7 If the QUADEQ instance is not satisfiable, then for any functions f, g (i.e. any proof string) the verifier
will reject with probability at least 1/2.

Proof. We consider some cases, where each case assumes the previous case(s) did not apply:

• Case: One of f or g is not 0.001-close to being linear.

Then the verifier rejects with probability at least 1− 0.9992000 ≥ 1/2.

• Case: f is 0.001-close to WHu and g is 0.001-close to WHv where v 6= u⊗ u.

With probability at least 1−(3/4)10 there is some sampled pair (r, r′) such that WHu(r)·WHu(r′) 6= WHv(r⊗r′).
There are 30 queries in total, so all local decoding steps succeed with probability at least 1−60·0.001 = 0.94
no matter which r or r′ are sampled. So with probability at least 1− (0.1 + 0.06) ≥ 0.5, the verifier would
reject.

• Case: The function WHu⊗u that g is 0.001-close to does not have u satisfying the QUADEQ instance.

In this case, the probability that some sampled r has WHu⊗u(yT ) 6= rT · b where y = rT · A is at least
1 − 1/210. There are 10 queries in total, so all local decoding steps succeed with probability at least
1− 10 · 0.001. So with probability at least 1− (1/210 + 10 · 0.001) ≥ 0.5 the verifier rejects.

Observe that in the case that QUADEQ is not satisfiable, any proof string / pair of functions f, g would fall under
one of these cases.

To wrap this up, note that a polynomial number of random bits are sampled for each query and the verifier
runs in polynomial time (assuming it has random access to the proof string). That is,

QUADEQ ∈ PCP(poly(n), O(1)).


