
CMPUT 675: Computational Complexity Theory Winter 2019

Lecture 13 (Feb. 26): IP = PSPACE
Lecturer: Zachary Friggstad Scribe: Tim Put

13.1 Easy direction: IP ⊆ PSPACE

IP ⊆ PSPACE because PSPACE gives us sufficient power to simulate the polynomial time verifier against all
possible proof strategies, and determine if the best strategy is sufficient. Note that we do not need to actually
compute what the best strategy is, merely that the best strategy is good enough to convince the verifier more
than two-thirds of the time.

Suppose L ∈ IP. Then there exists an interactive proof protocol with a prover P and a verifier V for L.
To decide L in PSPACE, we will simulate the (polynomial time) verifier on all the (at most polynomial length)
prover schemes. Prover schemes can be encoded as a polynomial length list of polynomial length messages,
which itself is just a polynomial length bit string. Represent the collection of possible IP computations to decide
the given string x, as a tree where each node of even depth represents a message from the prover, and each
node of odd depth represents message from the verifier. This tree has polynomial depth, since the proofs are of
polynomially many rounds. Traverse the tree in a depth first order, reusing space, and assign a 1 to each node
where the verifier accepts and a 0 to each node where the verifier rejects. For any internal prover node, once
all of its children have been assigned weights (on the way ‘back up’), assign it the maximum of the weights of
its children, since this corresponds to choosing the optimal prover message. For any internal verifier node, once
all of its children have been assigned weights (on the way ‘back up’), assign it the average of the weights of its
children. Since the verifier randomly chooses its message, the prover can expect its average performance from
this node, to be the average of its performances on the child nodes. Once the tree has been traversed, the root
node will have a single weight assigned to it. If this value is greater than 2/3, accept x, otherwise reject.

13.2 Warm-up on #SAT

Definition 1 #SAT = {(φ, k) : φ is a CNF with exactly k satisfying assignments}

We begin with a warm up proof that #SAT ∈ IP, by specifying an interactive proof procedure for #SAT
instances. The procedure comes in two conceptual steps: an encoding of the problem instance as a polynomial
equivalence test, and a polytime polynomial equivalence proof procedure.

13.2.1 Preprocessing

Given a #SAT problem instance φ, we “Arithmatize” the CNF φ, mapping the Boolean forumla to a polynomial
over Z, giving us access to algebraic tools. We treat conjunctions as multiplication, and use de Morgan’s law
to transform disjunctions into conjunctions. Negation, naturally, is expressed as the only (up to extensionality)
fixed-point free map on Z2.

• Arith(⊥) 7→ 0

13-1



13-2 Lecture 13: IP = PSPACE

• Arith(>) 7→ 1

• Arith(x̄i) 7→ (1− Arith(xi))

• Arith(ci ∧ cj) 7→ Arith(ci) · Arith(ci)

e.g. x1 ∨ x̄3 ∨ x̄4 7→ 1− (1− x1) · x3 · x4, up to an abuse of notation on the variable names.

It is clear by inspection that a CNF is satisfied by a given assignment iff the corresponding assignment makes
the arithmatized CNF equal to 1. Without loss of generality we assume that each variable appears at most once
in each clause of a given #SAT instance (otherwise, if the variables appear with opposite valence, the clause
reduces to >, and if with the same valence, then the duplicate may be deleted). We write Arithφ(x1, . . . , xn)
for the polynomial resulting from the arithmatization of a CNF φ. Note that the degree of the polynomial is a
most d = n ·m where n is the number of variables in the CNF, and m is the number of clauses.

Then:

(φ, k) ∈ #SAT⇐⇒
∑

x1∈{0,1}

∑
x2∈{0,1}

· · ·
∑

xn∈{0,1}

Arithφ(x1, x2, . . . , xn) = k (13.1)

13.2.2 Protocol

Here we describe an interactive proof protocol for verifying the arithmetic expression above. Here, we will use
m to denote the number of clauses, n the number of variables, and d = n · m to be an upper bound on the
polynomial Arithφ(x1, x2, . . . , xn).

13.2.2.1 Protocol initialization

• Prover: choose a prime p ∈ (d · 2n, d · 2n+1] (this is always possible, by Chebyshev’s theorem).

• Verifier: check that p is prime, reject if it is not, otherwise continue (this is possible in polynomial time
by [AKS04], though even a probabilistic check would suffice).

Rather than checking 13.1, the protocol will check the following equation. This equation holds exactly when
13.1 holds, since p > d · 2n > k and the polynomial evaluates to 0 or 1 when all inputs are 0 or 1.∑

x1∈{0,1}

∑
x2∈{0,1}

· · ·
∑

xn∈{0,1}

Arithφ(x1, x2, . . . , xn) =p k (13.2)

The notation =p means the quantities are equal modulo p.

However, rather than directly checking (13.2), the verifier will interact with the prover to and iteratively try to
reduce the number of variables in the expression in a “probably sound”.

Eventually the procedure bottom out on a polynomial equation small enough for the verifier to check directly
with its own computational power.

13.2.2.2 Protocol interaction

Verifier: computes the following “expression” g in this compact form (i.e. without opening up the parenthesis
in the polynomial Arithφ(x1, x2, . . . , xn) or evaluating the sums). The goal is to understand if the claim g =p k



Lecture 13: IP = PSPACE 13-3

is true or false:
g :=

∑
x1∈{0,1}

∑
x2∈{0,1}

· · ·
∑

xn∈{0,1}

Arithφ(x1, x2, . . . , xn) (13.3)

Then the following steps are repeated, each step eliminates one of the sums by directly replacing some xi with
a fixed value.

Prover: provides the following univariate polynomial (as a list of coefficients modulo p), as a witness for the
previous claim.

s1(x1) =
∑

x2∈{0,1}

∑
x3∈{0,1}

· · ·
∑

xn∈{0,1}

Arithφ(z1, x2, . . . , xn) (13.4)

Verifier: checks that s1(0) + s1(1) =p k, and that s1 is of degree at most d; rejects if the check fails. The
verifier can safely reject in this case: if s1(0)+s1(1) 6=p k then either the prover did not send the true univariate
polynomial obtained by evaluating the last n− 1 sums in g, or it did but then (φ, k) 6∈ #SAT.

Otherwise, the verifier samples z1 uniformly from Zp (integers modulo p), sends z1 to the prover, and repeats
the protocol except with asking if

s1(z1) =
∑

x2∈{0,1}

∑
x3∈{0,1}

· · ·
∑

xn∈{0,1}

Arithφ(z1, x2, x3, . . . , xn).

The verifier then asks the prover to send a polynomial s2(x2) such that:

s2(x2) =
∑

x3∈{0,1}

∑
x4∈{0,1}

· · ·
∑

xn∈{0,1}

Arithφ(z1, x2, x3, . . . , xn) (13.5)

Verifier: checks that
s1(z1) = s2(0) + s2(1) (13.6)

The protocol iterates in this fashion having the prover send a polynomial si(xi) with degree at most d with the
intent that

si(xi) =
∑

xi+1∈{0,1}

· · ·
∑

xn∈{0,1}

Arithφ(z1, z2, . . . , zi−1, zi, xi+1, . . . , xn) (13.7)

and having the verifier check si(0) + si(1) = si−1(zi−1) (reject if it fails) and then randomly sampling zi ∈ Zp
if it succeeds and sending this to the prover.

This continues until the verifier is left with checking

sn(zn) = Arithφ(z1, . . . , zn).

The verifier can directly check this in polynomial time without further help.

13.2.2.3 Completeness

(φ, k) ∈ #SAT:
In this case the protocol proceeds without trouble and the verifier accepts with probability 1, by construction.
The prover simply needs to provide the polynomials (13.7) it has been requested to send.



13-4 Lecture 13: IP = PSPACE

13.2.2.4 Soundness

(φ, k) 6∈ #SAT:
In this case, in the first step, either the first polynomial s1(z1) has s1(0) + s1(1) 6= k, in which case the verifier
immediately rejects, or s1(0) + s1(1) = k in which case s1(0) + s1(1) 6= g. In the latter case, we have the
polynomial s1(x1) is distinct from the univariate polynomial (over x1) obtained by partially evaluating g at the
last n− 1 sums.

But two distinct degree d polynomials can agree on at most d points (since the difference of two distinct degree
d polynomials is nonzero and has degree d). So when sampling z1 the probability that

s(z1) 6=
∑

x2∈{0,1}

· · ·
∑

xn∈{0,1}

Arithφ(z1, x2, . . . , xn)

is at least 1− d/p. If so, then the next iteration begins with a false claim to be verified.

In general if ki 6=
∑
xi+1∈{0,1} · · ·

∑
xn∈{0,1} Arithφ(z′1, . . . , z

′
i, xi+1, . . . , xi−1} where ki := si(z

′
i) then either the

verifier will reject si+1 or, with probability at least 1−d/p, the subsequent round will begin with the false claim
ki+1 6=

∑
xi+2∈{0,1} · · ·

∑
xn∈{0,1} Arithφ(z′1, . . . , z

′
i, xi+1, . . . , xi−1}.

So if the base case is reached, then with probability (1− d/p)n ≥ (1− 1/2n)n ≥ 2/3 (for n ≥ 3) the statement
sn(zn) =p [Arithφ(z1, . . . , zn) is false and the verifier will determine this through direct calculation.

13.3 IP = PSPACE

The warm up on #SAT gave us a protocol for deciding polynomial equality in IP for polynomials with poly-
nomial bit complexity. To show that PSPACE ⊆ IP we will extend the “arithmatization” trick to formulas with
universal, as well as existential quantifiers. This will allow us to use the protocol for TQBF instances. We will,
however, need one more trick to ensure that the polynomials exchanged retain only polynomial bit complexity:
the ∀ will correspond to multiplication and this could cause a true TQBF instance to evaluate to an integer
much greater than 2n if we leave ∃ corresponding simply to a sum. The trick is to use a different substitution
for ∃ so the final expression is guaranteed to be 0 or 1.

We ammend the “arithmatization” from before with two new mapping rules:

• Arith(∃xi : φ(x1, . . . , xn)) 7→ (1−(1−Arithφ(x1, . . . , xi−1, 0, xi+1, . . . , xn))·(1−Arithφ(x1, . . . , xi−1, 1, xi+1, . . . , xn))

• Arith(∀xi : φ(x1, . . . , xn)) 7→ Arithφ(x1, . . . , xi−1, 0, xi+1, . . . , xn) · Arithφ(x1, . . . , xi−1, 1, xi+1, . . . , xn)

Note that the mapping for the existential quantifier corresponds to the de Morgan transformed OR we saw
earlier, while the mapping for the universal quantifier corresponds to our encoding of AND. We can now encode
TQBF instances as polynomials, which evaluate to one iff the corresponding quantified Boolean formula is true.
However, the universal quantifier mapping rapdily inflates the degree of the polynomial produced, with each
universal quantifier potentially doubling the degree of the resulting polynomial. In general, a formula which
maps to a degree d polynomial, when wrapped in n universal quantifiers maps to a polynomial of degree 2nd
which cannot be sent as a polynomial length message in an IP protocol.

Observe that x ∈ {0, 1} ⇒ x2 = x ⇒ xn = x, for n > 0. So, so long as we are only concerned with {0, 1}
arguments, we can reduce the complexity of polynomial by linearizing the variables.
Let Ri be the operator on polynomials which linearizes the ith argument of the given polynomial, then



Lecture 13: IP = PSPACE 13-5

∀x̂ ∈ {0, 1}nRip(x̂) = p(x̂). Note that Rip can be computed in time polynomial in p if p is given as an explicit
sum of monomials: simply traverse the representation of the polynomial, and replace each instance of xki with xi.

Then, if we interleave appropriate calls of the reduction operators Ri into the protocol, we can restrict the
exchanged intermediate polynomials to polynomials of polynomial bit complexity, since each polynomial is of
degree at most 2 over at most n variables, since at most one degree doubling will occur between each reduction,
and after reduction the polynomial is a multilinear polynomial.

From here, the protocol to decide TQBF is similar to that for #SAT:

13.3.1 Protocol

• Prover: choose a prime p ∈ (2n, 2n+1] (this is always possible, by Chebyshev’s theorem).

• Verifier: check that p is prime, reject if it is not, otherwise continue (this is possible in polynomial time
by [AKS04], though even a probabilistic check would suffice).

The protocol will check the following equation:

O1R1O2R1R2 . . . OnR1 . . . Rn Arithφ(x1, x2, . . . , xn) =p 1 (13.8)

Where Oi ∈ {∃xi,∀xi}

• Verifier: if no quantifiers or reduction operators appear in the instance being decided, simply check if
Arithφ(z1, z2, . . . , zn) =p 1, accept if that holds, and reject otherwise. Else proceed by case analysis on the
outermost operator or quantifier.

Case:

1. Oi = ∀xi:
The prover sends a linear polynomial s(xi). The verifier checks that s(0) ·s(1) =p k and rejects if this fails.
Otherwise the verifier samples zi uniformly from Zp, sends it to the prover. The protocol then recurses
with Oi eliminated, and the fixed zi substitued in for xi.

The intent is that s should be the univariate polynomial obtained if all operators except ∀xi one were
applied. The next round continues with this operator removed and with the new value s(0) · s(1) for k.

2. Oi = ∃xi:
The prover sends a linear polynomial s(xi). The verifier checks that 1 − (1 − s(0)) · (1 − s(1)) =p k and
rejects if this fails. Otherwise the verifier samples zi uniformly from Zp, sends it to the prover. The
protocol then recurses with Oi eliminated, and the fixed zi substitued in for xi.

Again, the intent is that s should be the univariate polynomial obtained if all operators except ∃xi one
were applied. The next round continues with this operator removed and with the new value s(0) + s(1)
for k.

3. Ri:
This takes just a bit more explaining. In general, some values z1, . . . , zj have already been fixed when an
operator of the form Ri(i ≤ j) is the leftmost operator that should be removed. At this point, we are
trying to verify

k = [RiRi−1 · · ·R1][Oj+1Rj+1 · · ·R1][Oj+2Rj+2 · · ·R1] · · · [OnRn · · ·R1]ArithΦ(z1, . . . , zj−1, xj , . . . , xn).



13-6 Lecture 13: IP = PSPACE

The square brackets are added just for emphasis. Here, each Oj′ is of the form ∀xj′ or ∃xj′ .
The polynomial s that is requested by the verifier is supposed to be the univariate polynomial (over
xi) obtained by first applying the remaining operators [Ri−1 · · ·R1][Oj+1Rj+1 · · ·R1] · · · [OnRn · · ·R1] to
ArithΦ(x1, . . . , xn) and then plugging in all z1, . . . , zj except zi, leaving xi as a variable.

The prover sends an at most quadratic polynomial s(xi) (since we have at most doubled the degree of the
polynomial since the last multilinearization). The verifier checks that [Ris](zi) =p k and rejects if this
fails. The verifier the resamples zi uniformly from Zp, sends it to the prover. The protocol then recurses
with this call to Ri eliminated, and the new zi substituted in for for the old zi and with the new value for
k being s(zi).

Note that each case reduces the number of quantifiers plus reductions by one, and so the recursion terminates.

13.3.1.1 Completeness

Similar to the #SAT case, by construction, if the instance is a valid TQBF instance, then at each step, the
prover can provide an honest answer which ensures the verifier does not reject, and that the next claim is also
true. So in the true case, the verifier will accept with probability one.

13.3.1.2 Soundness

Again similar to the #SAT case, in each step of the recursion, if the prover’s claim going into the recursion
was false, then even if it avoids being rejected in that round, it proceeds to the next recursion with a false claim
with high probability. In particular, if the prover’s claim is false, it either provides a polynomial which fails the
verifiers check, or it provides a distinct at most degree 2 polynomial. But, again, distinct degree 2 polynomial
agree at at most 2 points. So the verifier catches the prover with probablilty ≥ 1− 2/p. Hence the probability

that the verifier rejects, given that the intial claim by the prover was false is ≥ (1 − 2/p)n
2 ≥ 2/3 for large

enough n. Here, n2 is an upper bound on the number of operators that are to be removed.

Therefore TQBF ∈ IP, hence PSPACE ⊆ IP, thus PSPACE = IP.

Comment: Observe that in the “yes” instance case, the verifier can always convince the prover to accept. So
in the definition of IP we could require the verifier to always accept some prover and this would not change the
set of languages that can be decided with an interactive proof.

References

AKS04 M. Agrawal and N. Kayal and N. Saxena, PRIMES Is in P, Annals of Mathematics 2 Vol. 160, 2004,
pp.781–793.

SHA92 A. Shamir, IP = PSPACE, J. ACM 4 Vol. 39, 1992, pp.869–877.

SHE92 A. Shen, IP = PSPACE: Simplified Proof, J. ACM 4 Vol. 39, 1992, pp.878–880.


