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12.1 Introduction

Recall the definition of IP[k] from the last lecture, i.e., we say L ∈ IP[k] if there is a probabilistic verifier V
whose running time is polynomial in the size of the input x alone and

(Completeness) x ∈ L ⇒ ∃P, Pr[k − round interactions of V and P on x make V accepts] ≥ 2
3 ,

(Soundness) x /∈ L ⇒ ∀P, Pr[k − round interactions of V and P on x make V accepts] ≤ 1
3 .

The number of rounds k could up to a polynomial in |x|. We emphasize that the running time of the verifier in
each round is be bounded by a polynomial in |x| itself.

We also defined IP to be
⋃
c≥0 IP[nc]. One can show that IP ⊆ PSPACE since for any verifier, we can compute

the optimum prover (the one which maximizes the verifier’s acceptance probability) using only polynomial space
in the size of the input. The assignment asks you to fill out the details. Later we will prove that in fact
IP = PSPACE.

One of the key property of IP is that the prover does not know the random bits of the verifier. In this lecture,
we focus on a more restricted complexity class than IP known as AM.

Definition 1 (Arthur-Merlin Intractive Proof) AM[k] is a subset of IP[k] when we restrict the verifier
to only send its random bits as messages to the prover, and not using any other random bits not contained in
its messages. We also set AM := AM[2].

The above intractive proof also known as public coin proof simply because the prover is aware of all the random
bits used by verifier.

Recall the Graph Non-Isomorphism problem (GNI), i.e., deciding whether two given graphs are not isomorphic.
In the previous lecture, we showed that GNI ∈ IP. In this lecture, we show that in fact by using a more
sophisticated protocol, we can restrict the verifier to only use the public random bits. For the rest of this
lecture, we will focus on proving the following result:

Theorem 1 GNI ∈ AM.

More generally, we have the following theorem:

Theorem 2 (Goldwasser-Sipser ’87) For every k : N→ N with k(n) computable in poly(n),

IP[k] ⊆ AM[k + 2].

The main idea of the proof of Theorem 2 is the same as the proof of Theorem 1 and it is omitted here.
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Figure 12.1: Graphs in Example 1.

12.2 Proof of Theorem 1 (First Attempt)

In this discussion, for any graph G we consider with, say, n nodes, we use numbers 1 through n to label the
nodes of G.

Let aut(G) := {π ∈ Sn : G = π(G)}, where Sn is the symmetric group consists of all n! permutations of the
sequence [1, 2, 3, . . . , n] and aut(G) is the set of all permutation π of the labels of G such that ij ∈ E(G) if and
only if π(i)π(j) ∈ E(G). That is, permuting the labels of G according to some π ∈ aut(G) gives us the same
labelled graph.

Example 1 Consider the graphs G, H1, and H2 in Figure 12.1. Note that G = H1, i.e., V (G) = V (H1) and
E(G) = E(H1). Define π ∈ S3 to be π(1) = 1, π(2) = 3, and π(3) = 2. Then, π(G) = H1 = G; hence,
π ∈ aut(G). Define π′ ∈ S3 to be π(1) = 2, π(2) = 3, and π(3) = 1. So π(G) = H2 and H2 is isomorphic to G
but π′ /∈ aut(G).

The following lemma reduces GNI problem to a counting problem.

Lemma 1 Let G1, G2 be two graphs on n nodes. Let S := {(H,π) : (H ∼= G1 or H ∼= G2) and π ∈ aut(H)}.
Then,

1. If G1
∼= G2, then |S| = n!, and

2. If G1 � G2, then |S| = 2 · n!.

Proof. Let G be a graph on n nodes. Define set SG as follows: SG := {(H,π) : H ∼= G and π ∈ aut(H)}. We
will show that |SG| = n! and this proves the lemma since S = SG1 ∪SG2 and in Case 1 we have SG1 = SG2 and
in Case 2 we have SG1

∩ SG2
= ∅.

Suppose π1, ..., πk are all the permutations such that πi(G) = H for all 1 ≤ i ≤ k. Let aut(H) = {σ1, ..., σt}.
By considering the permutations πi ◦ π−11 : H → H for all 1 ≤ i ≤ k, we see they are distinct automorphisms of
H so t ≥ k. Next, by considering the permutations σi ◦ π1 : G → H for all 1 ≤ i ≤ t we also see k ≥ t. So we
conclude t = k. Now it is easy to see there is a bijection between Sn and SG.

By Lemma 1, in order for the prover to convince the verifier that G1 � G2 with good probability, it is enough
to convince the verifier that |S| = 2 · n! with good probability.

Also note that given a pair (H,π), to decide whether it is in S or not can be certified by the prover easily. The
prover can send a permutation σ and i ∈ {1, 2} and verifier can check σ(Gi) = H or not. Also verifier can check
π(H) = H holds or not without any help from the prover.
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Lemma 1 and the above discussion suggest that to prove Theorem 1, it suffices to show that the set lower bound
problem defined below, is in AM.

Definition 2 (Set Lower Bound Problem) Given m ∈ N, an implicit set S ⊆ {0, 1}m such that membership
in S can be certified in poly(m), and γ ∈ N. The Yes-instances of the problem are when we have |S| ≥ γ and
No-instances are when |S| ≤ γ

2 . The problem is to decide between Yes/No-instances.

Now, suppose in the set lower bound problem, Yes-instances are |S| = γ = α · 2m and No-instances are
|S| = γ

2 = α
2 · 2

m for some constant α. Then, the following protocol works correctly:

Protocol For Set Lower Bound Problem When |S|2m Is Constant

Reapeat O(α) = O(1) times in parallel:

Verifier: pick x ∼ {0, 1}m and ask prover is x ∈ S?

Prover: Send a certificate that x ∈ S (if possible).

Verifier: Check that the certificate is valid.

Verifier accepts if the fraction of valid certificates is at least 3
4α.

Note that repeating in parallel in the above protocol means verifier picks several choices of x, O(1) many, and
send them all to the prover at once. So this protocol is a 2-round interactions between the verifier and the
prover. Furthermore, if |S| = α · 2m, then the probability that x ∈ S is exactly α, otherwise the probability is
exactly α

2 . Applying Chernoff bounds, we can prove that if the instance is a Yes-instance, then the verifier’s
acceptance probability is at least 2

3 and if it is a No-instance, then the acceptance probability is at most 1
3 . See

the proof of Theorem 1 in the next section for an explicit example of applying Chernoff bounds in this cases.

The parallel repetition is to restrict the number of rounds of communication to 2. A great question to ask is
whether the prover can coordinate its answers to all of the questions/random bits from the verifier at once in
order to improve the probability that the verifier accepts. In this case, it is not possible because the prover’s
best strategy is to clearly answer each query by providing a certificate, if possible, and the various queries were
sampled independently.

Note that if α is not constant, then even with Chernoff bounds we need more than constant repetition of the
protocol we discussed above.

Unfortunately, in GNI problem, |S| is much smaller than 2m. Since the verifier needs to pick a random graph

with n nodes, and the number of all graphs with n nodes is almost 2n
2

but the size of S is O(n!) = O(2n·logn).

To overcome the issue that |S| is much smaller than the size of the universe {0, 1}m, we use a collection of hash
functions to map the universe to a smaller universe where the value of the “new” α is a constant. The verifier
can then sample from this smaller universe. We define this protocol formally in the next section.

Definition 3 (Pairwise Independent Hash Functions) Hm,k, a collection of hash functions h : {0, 1}m →
{0, 1}k, is pairwise independent if ∀x, x′ ∈ {0, 1}m where x 6= x′ and ∀y, y′ ∈ {0, 1}k, we have

Pr
h∼Hm,k

[h(x) = y and h(x′) = y′] =
1

22k
.

From Definition 3, we have the following immediate observation:
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Claim 1 Let Hm,k be the family of hash functions defined in Definition 3. Then, for given x ∈ {0, 1}m and
y ∈ {0, 1}k we have

Pr
h∼Hm,k

[h(x) = y] =
1

2k
.

Proof. Pick an element x′ 6= x, then we have

Pr
h∼Hm,k

[h(x) = y] = Pr
h∼Hm,k

[(h(x) = y) ∩ (
⋃

y′∈{0,1}k
h(x′) = y′)] (12.1)

=
∑

y′∈{0,1}k
Pr

h∼Hm,k
[(h(x) = y) ∩ (h(x′) = y′)] (12.2)

= 2k · 1

22k
(12.3)

=
1

2k
, (12.4)

where (12.1) and (12.2) follow from the fact that events h(x′) = y for different ys are disjoint and their union
is {0, 1}k. And (12.3) follows from pairwise independence property of Hm,k.

We have the following result for a collection of hash functions. Say that a collection Hm,k is implicitly
constructible if we can represent each h ∈ Hm,k using poly(m) bits, the value h(x) can be computed in
poly(m) time using the representation for h, and if we can sample h ∼ Hm,k uniformly in polynomial time.

Lemma 2 For k ≤ m, there is an implicitly-constructible pairwise-independent family Hm,k.

See the Appendix A for the proof of Lemma 2.

12.3 Proof of Theorem 1 (Second Attempt)

In this section, we give a new protocol for set lower bound problem that even works when |S| is very small
compare to the size of the universe.

Set Lower Bound Protocol (Goldwasser-Sipser ’87)

Repeat α times in parallel where α is a constant (fixed later):

Verifier: Let k ∈ N be such that 2k−2 < γ ≤ 2k−1. Sample y ∼ {0, 1}k, h ∼ Hm,k, and send these
to prover.

Prover: Send x ∈ {0, 1}m such that h(x) = y and a certificate for x ∈ S, if possible.

Verifier: Check if h(x) = y and check if the certificate for x ∈ S is correct. If both tests are
passed, verifier marks this certificate as a valid certificate.

Verifier accepts if the fraction of valid certificates is at least 5p
8 , where p := γ

2k
.

We comment that the verifier can in fact expose all of their random bits to the prover when sampling y, h, so
this is a “public coins” protocol.

The following is the main lemma for proving Theorem 1.
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Lemma 3 Consider one iteration of the set lower bound protocol. Recall p = γ
2k

. Then, the prover can find a
valid certificate with probability Pr

y,h
[∃x ∈ S : h(x) = y], furthermore:

1. If |S| = γ, then ∀y ∈ {0, 1}k, Pr
h∼Hm,k

[∃x ∈ S : h(x) = y] ≥ 3
4p, and

2. If |S| ≤ γ
2 , then ∀y ∈ {0, 1}k, Pr

h∼Hm,k
[∃x ∈ S : h(x) = y] ≤ p

2 .

Proof. Proof of part (1): Given y ∈ {0, 1}k, for x ∈ {0, 1}m let Ex be the event that h(x) = y. Then,

Pr
h∼Hm,k

[∃x ∈ S : h(x) = y] = Pr[
⋃
x∈S

Ex] (12.5)

≥
∑
x∈S

Pr[Ex]− 1

2

∑
x,x′∈S
x 6=x

Pr[Ex ∩ Ex′ ] (12.6)

=
∑
x∈S

2−k − 1

2

∑
x,x′∈S
x6=x′

2−2k (12.7)

≥ |S|
2k
− 1

2
· |S|

2

22k
(12.8)

=
γ

2k
(1− γ

2k+1
) (12.9)

≥ γ

2k
(1− 2k−1

2k+1
) (12.10)

=
3p

4
, (12.11)

where (12.5) follows from inclusion-exclusion principle truncated to the second term, (12.7) follows from defi-
nition of pairwise independence and Claim 1, (12.9) holds because of our assumption that |S| = γ, and finally
(12.10) holds since γ ≤ 2k−1. Also note that if |S| ≥ γ, then of course the probability that y has a preimage in
S increases; hence, we get a better lower bound than (12.11).

Proof of part (2): This is easy. Since h(S), the set of range of h on set S, has size at most |S|, for any h ∈ Hm,k
the probability that y has a preimage in S is at most |h(S)|

2k
≤ |S|

2k
≤ γ

2k+1 = p
2 , where the last inequality comes

from the assumption that |S| ≤ γ
2 and the equality follows from the value of p defined in the lemma.

Note that the set lower bound protocol is a two round interactions, and the verifier sends all the random bits
that are used to the prover. Finally, let us apply Chernoff bounds to get the desired bounds on the probabilities
of success. Suppose |S| ≥ γ. By Lemma 3, the probability that in one iteration verifier marks a certificate as
a valid certificate is at least 3p

4 ; thus µ := E[# of valid certificates] ≥ 3p
4 . Also note that the probability

that verifier rejects is the probability of the event that the number of valid certificate is less than 5p·α
8 . Let

ε := 1− 5p·α
8µ . Note that 1

6 ≤ ε < 1. So we can apply Chernoff bounds and get:

Pr[# valid certificate ≤ (1− ε)µ] ≤ e−
µε2

2 ≤ e−
3p·α

4 ·
1
36 ·

1
2 ≤ e− α

384 ,

where the second inequality comes from the fact that ε ≥ 1
6 , and the last inequality follows from the fact that

1
4 < p. So if we set α = 2 × 384, the above probability becomes ≤ 1

4 , i.e., if |S| ≥ γ, then with probability
at least 3

4 ≥
2
3 , the verifier accepts, as desired. The calculations for the No-instances are almost the same and

omitted here.
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Appendix A: Proof of Lemma 2

Let GF(2m) be the field of size 2m. It is known that GF(2m) has a “natural” binary representation in {0, 1}m
(see below for further low-level comments along this line) in which both addition and multiplication can be done
in poly(m) time. So in the following discussion, GF(2m) can be thought of as {0, 1}m with additional arithmetic
structure.

For two elements a, b ∈ GF(2m), let ha,b : GF(2m)→ GF(2m) be a hash function such that ha,b(x) = a · x+ b,
where the addiction and multiplication are in GF(2m). Then, we define the family of hash functions Hm,m to
be Hm,m := {ha,b : ∀a, b ∈ GF(2m)}. Observe it is trivial to sample from this family: we sample a, b ∼ GF(2m)
simply by flipping m random coins for each and appealing to the fact that elements of GF(2m) correspond to
{0, 1}m.

Claim 2 Hm,n is pairwise independent.

Proof. Given x, x′ ∈ GF(2m) that x 6= x′ and y, y′ ∈ GF(2m), consider the following system of equations:{
a · x+ b = y

a · x′ + b = y′

An elegant proof would use the fact that this is a full-rank system for fixed x 6= x′, y, y′ so there is a unique a, b
pair satisfying the system. Here is a more hands-on proof.

From the above system, we have a·x−y = a·x′−y′⇒ a = (y−y′)·(x−x′)−1 (note that x−x′ 6= 0), and b = a·x−y.
So a, b are determined uniquely based on x, x′, y, y′, i.e., there is exactly one pair (a, b) ∈ GF(2m) × GF(2m)
such that ha,b(x) = y and ha,b(x

′) = y′. Thus, we have

Pr
ha,b∼Hm,m

[ha,b(x) = y and ha,b(x
′) = y′] = Pr

a,b∼GF(2m)
[a · x+ b = y and a · x′ + b = y′] (12.12)

= Pr
a,b∼GF(2m)

[a = (y − y′) · (x− x′)−1 and b = a · x− y] (12.13)

=
1

22m
. (12.14)

To finish the proof of the lemma, we need to show that for k ≤ m we can construct Hm,k in poly(m). But
this is easy, we start by constructing Hm,m and then for each h ∈ Hm,m and x ∈ GF(2m), we truncate the last
m− k bits from h(x). Let Hm,k be the set of all such functions. Given a two vectors (not necessarily same size)
y, w, let y|w be the concatenation of these two vectors. Then, given y, y′ ∈ {0, 1}k, we have
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Pr
ha,b∼Hm,k

[ha,b(x) = y and ha,b(x
′) = y′] =

⋃
w,w′∈{0,1}m−k

Pr
a,b∼GF(2m)

[a · x+ b = y|w and a · x′ + b = y′|w′]

(12.15)

= 22(m−k)
1

22m
(12.16)

=
1

22k
. (12.17)

Appendix B: Working with Finite Fields

Some parts are missing from this, if you want further references on this material then please contact the
instructor! This assumes more exposure to algebra than is required for the course, so consider this supplementary
material that will not be tested in an assignment.

To efficiently work with GF(2m), consider the following way to construct GF(2m). Let f(x) ∈ Z/2Z[x] be an
irreducible polynomial with degree exactly m over the ring of integers modulo 2. By irreducible, we mean that
whenever f(x) = g(x) · h(x) where g(x), h(x) ∈ Z/2Z[x] then either g(x) or h(x) is a constant (i.e. f(x) has
no nontrivial factors). There is a simple, polynomial-time, deterministic algorithm that, given a proposed f(x),
will decide if it is irreducible or not.

Furthermore, there are exactly 2m−1
m irreducible polynomials of degree m. So after, say, Θ(m2) samples of

degree-m polynomials we will have sampled an irreducible polynomial with probability at least 1 − 2−m. We
can be certain which one is irreducible (if any) by running the deterministic test mentioned above.

Now one representation of GF(2m) can be succinctly described as the quotient ring Z/2Z[x]/(f(x)) where f(x)
is an irreducible polynomial of degree m. That is, the field is just arithmetic in Z/2Z[x] modulo f(x).

One can prove that since f(x) is irreducible then every polynomial g(x) that does not vanish modulo f(x) has
an inverse h(x) satisfying g(x) · h(x) ≡ 1 mod f(x). This can be proven using, say, the Euclidean algorithm for
polynomials where we use the following “division algorithm” fact: for any polynomials g(x), h(x) with h(x) 6= 0
we have that there are unique polynomials q(x), r(x) (quotient and remainder) satisfying g(x) = q(x)·h(x)+r(x)
where deg(r) < deg(h) and q has 1 as its leading coefficient. Such q(x), r(x) can be computed efficiently using
a grade-school division algorithm.

The 2m distinct polynomials with degree ≤ m− 1 form a system of distinct representatives for the elements of
Z/2Z[x]/(f(x)) and these correspond in a natural way to {0, 1}m by having each bit describe a coefficient of
such a polynomial.

Summary
With extremely high probability, in poly(m) time we can sample an irreducible polynomial f(x) of degree m
and verify that it is indeed irreducible. Every {0, 1}m is interpreted as a polynomial over integers mod 2 that
itself is reduced modulo f(x). Addition, subtraction, multiplication, and inverses are computed using arithmetic
of these polynomials modulo f(x). The inverses can be efficiently computed using the Euclidean algorithm for
polynomials.


