
CMPUT 675: Computational Complexity Theory Winter 2019

Lecture 11 (Feb 12th): BPP & Interactive proofs
Lecturer: Zachary Friggstad Scribe: Gao Yue

11.1 BPP

We have defined BPP using probabilistic TMs, but we can also define BPP using verifiers:

Definition 1 An Alternative Definition of BPP :
BPP contains language L if there exists a polynomial time NP verifier M (time cost of M = p(n)) such that

• x ∈ L→ Pr
y∼{0,1}p(|x|)

[M(x, y) = accept] ≥ 2
3

• x /∈ L→ Pr
y∼{0,1}p(|x|)

[M(x, y) = accept] ≤ 1
3

11.1.1 BPP ⊆ P/poly

Theorem 1 (Adleman ’78) BPP ⊆ P/poly

Proof. Suppose L ∈ BPP, then by the error reduction procedure there exists a poly-time TM M and a poly-
nomial p such that for ∀x:

Pr
r∼{0,1}p(|x|)

[M(x,r) correctly determines if x is in L or not] ≥ 1− 2−(|x|+1)

For any fixed n, let’s build a circuit Cn deciding all length-n inputs. For x ∈ {0,1}n, let Sx = {y: M(x,y)
incorrectly determines if x is in L or not}.
Note :

| ∪
x∈{0,1}n

Sx| ≤
∑
x

|Sx| (11.1)

≤
∑
x

2p(n)

2n+1
(11.2)

= 2n · 2p(n)

2n+1
(11.3)

= 2p(n)−1 (11.4)

< |{0, 1}p(n)| (11.5)

This implies that ∃r′ ∈ {0, 1}p(n) such that ∀x ∈ {0, 1}n, M(x, r′) correctly determines if x is in L or not. Since
M(·, r′) is a deterministic poly-time TM given such a string y that correctly determines all x ∈ {0, 1}n, then
following the circuit construction procedure in Theorem 1 of Lec 8, there exists a poly-size circuit Cn such

11-1

11-2 Lecture 11: BPP & Interactive proofs

that Cn(x) = L(x) for every x ∈ {0, 1}n and we can compute Cn in poly(n) time. More explicitly, the language
L′ = {(x, r) : M(x, r) = accept} is in P so it has a uniform family of polynomial-size circuits. Let C ′n+p(n)

be the family of circuits for inputs of size n+ p(n) (|x| = n, |r| = p(n)). Hard code the last p(n) wires to r′ to
produce the circuit Cn with n inputs. Hence for any language L in BPP, L has polynomial size circuit family.

11.1.2 BPP is in PH

In this section, we’ll describe a relation between BPP and the polynomial hierarchy.

Theorem 2 (Sipser-Gacs ’83) BPP ⊆
∑p

2 ∪
∏p

2

Proof. As
∑p

2 is complement of
∏p

2 and BPP is closed under complementation, it sufficies to show BPP ⊆
∑p

2.

Let L ∈ BPP, by error reduction (again) there is a poly-time TM M such that ∀x Pr
r∼{0,1}|p(x)|

[M(x,r) correctly

determines if x is in L or not] ≥ 1 - 1
2|x| .

Fix n, for x ∈ {0, 1}n, let Ax = {y ∈{0, 1}p(|x|): M(x,y) = accept}. For a fixed x, if x ∈ L, Pr
y∼{0,1}|p(x)|

[M(x, y) =

accept] ≥ 1− 1
2|x| .

• x ∈ L: In this case, |Ax| ≥ (1- 1
2n)·2p(n)

• x /∈ L: In this case, |Ax| ≤ 2p(n)

2n

But we need a statement like this that has perfect completeness in the “yes” case to show L resides in the
polynomial hierarchy. To do this, we consider some translations about a small set of vectors so translating each
Ax about these vectors will cover the entire space of random strings in the yes case, but still not cover the entire
space in the no case.

For u, v ∈ {0, 1}k, let u ⊕ v be the bitwise XOR of u and v. (i.e, 101 ⊕ 011 = 110). For S ⊆ {0, 1}n, u ∈
{0, 1}k, define S + u = {v ⊕ u : v ∈ S}. Let t =

⌈p(n)
n

⌉
+1.

Claim 1 For u1, ...ut ∈ {0, 1}p(n), ∪ti=1(Ax + ui) 6= {0, 1}p(n) if x /∈ L.

Proof. If x /∈ L,

| ∪ti=1 (Ax + ui)| ≤
t∑

i=1

|Ax + ui| (11.6)

=

t∑
i=1

|Ax| (11.7)

= t|Ax| (11.8)

≤ t
2p(n)

2n
(11.9)

< 2p(n) (11.10)

The last bound holds for large enough n. Of course, for bounded n we can just solve the problem in constant
time. This shows ∪ti=1(Ax + ui) 6= {0, 1}p(n).

Lecture 11: BPP & Interactive proofs 11-3

Claim 2 If x ∈ L, ∃u1, u2, ..., ut such that ∪ti=1(Ax + ui) = {0, 1}p(n).

Proof. Sample each ui randomly and independently from {0, 1}p(n). For any y ∈ {0, 1}p(n),

Pr[y /∈ ∪ti=1(Ax + ui)] =

t∏
i=1

Pr[y /∈ (Ax + ui)] By independence (11.11)

≤
t∏

i=1

1

2n
(11.12)

=
1

2nt
. (11.13)

Where (11.12) is because y /∈ (Ax + ui) if and only if y ⊕ ui /∈ Ax, and y ⊕ ui is uniform random variable in
{0, 1}p(n), so y ⊕ ui is in Ax with probability ≥ 1− 2−n since x ∈ L.

Hence,

Pr[∃y ∈ {0, 1}p(n)such that y /∈ ∪
i
(Ax + ui)] ≤

∑
y

Pr[y /∈ ∪
i
(Ax + ui)] By union bound (11.14)

≤
∑
y

1

2nt
(11.15)

=
2p(n)

2nt
(11.16)

≤ 2p(n)

2n(
p(n)
n +1)

Since t=
⌈p(n)

n

⌉
+1 (11.17)

< 1. (11.18)

So ∃u1, u2, ..., ut such that ∪ti=1(Ax + ui) = {0, 1}p(n).

Together Claims 1 and 2 show x ∈ L if and only if:

∃u1,, ut ∈ {0, 1}p(n)∀y ∈ {0, 1}p(n) ∪ti=1 M(x, y ⊕ ui) = accept.

Hence L ∈
∑p

2.

By now we have learned complexity classes including P,NP,BPP,ZPP,RP, coRP and P/poly. In summary,
the hierarchy of complexity classes possibly looks like Figure 11.1 where the picture considers all classes that
are not known to be equal as distinct (that is, some might actually be equal).

11.2 Interactive Proofs

The mechanism of interactive proof system is like a multi-round interaction between the prover (P) and the
verifier (V). In each round, the verifier asks a question according to all messages obtained so far and the prover
respond to that question, in the last round the verifier decides whether to accept. The formal definitions are as
follows :

Definition 2 (Interaction of Deterministic Functions) Let f, g : {0, 1}∗ → {0, 1}∗ be functions, k be an
integer ≥ 0. A k-round interaction of f and g on given input x ∈ {0, 1}∗ is defined as :

11-4 Lecture 11: BPP & Interactive proofs

Figure 11.1: Relation between complexity classes

a1 = f(x)
a2 = g(x, a1)

...
a2i+1 = f(x, a1, ..., a2i)
a2i+2 = g(x, a1, ..., a2i+1)

...
output = f(x, a1, ..., ak)

The output of the interaction is assumed to be 0 (reject), or 1(accept) in deterministic proof systems.

Definition 3 Deterministic Proof Systems
A language L has a k-round deterministic interactive proof if there exists a poly-time TM V that on input x, a1,
..., ai runs in time poly(|x|) such that:

• x ∈ L→ ∃P : {0, 1}∗ → {0, 1}∗, the output of V and P interacting on x in k rounds is 1(accept).

• x /∈ L→ ∀P : {0, 1}∗ → {0, 1}∗, the output of V and P interacting on x in k rounds is 0(reject).

Here, are treating the output of V as a string rather than just accept or reject. Also, k may be a function
of |x|: the number of rounds of interaction may not necessarily be bounded by a constant.

This yields another complexity class!

Definition 4 dIP

dIP = ∪
c≥0

(Languages with nc-round deterministic interactive proof systems)

The following theorem shows that a language can be determined by a poly-time verifier if and only if it has a
poly-round deterministic interactive proof system.

Lecture 11: BPP & Interactive proofs 11-5

Theorem 3 dIP = NP

Proof.

• NP ⊆ dIP : Recall that definition of NP is all languages decided by a poly-time verifier, so any NP
language L has a 1-round proof system as follows:

P : The prover just sends the certificate.
V : Verifies the certificate just like the NP verifier would.

• dIP ⊆ NP : Let L be a language L that has a deterministic interactive proof system with a verifier V
and a prover P . In input x, consider the interaction:

V (x) = a1
P (x, a1) = a2
...
V (x, a1, ..., ak) = 1

We build a PTV that can decide L according to this proof system. The certificate is just (a1, a2, ..., ak),
satisfying V(x) = a1, V(x,a1, a2) = a3,, and V(x,a1, ..., ak) = 1. Define a poly-time verifier M that
verifies V(x, a1, a2, a3, . . . , ai) = ai+1 for all odd i. It is easy to see that if x ∈ L, there exists such
certificate and the output of the verifier M is 1(accept); if x /∈ L, there does not exist such certificate
since the output of the proof system is always 0(reject). Thus, L ∈ NP.

11.2.1 Randomized Interactive Proof for Graph Non-Isomorphism

In this section, all graphs have their nodes labelled 1 through n = # nodes.

Definition 5 (Isomorphic) Two graphs G1 and G2 are isomorphic if there is a permutation π of the labels
of the nodes of G1 such that π(G1) = G2. If G1 and G2 are isomorphic, write G1 ' G2.

Graph Isomorphism: determine if G1 ' G2. This is in NP: a certificate is simply the description of the
permutation π.

Graph Non-Isomorphism is the opposite of Graph Isomorphism: it is the problem deciding whether two
given graphs are not isomorphic. It is not known if the problem is in NP. Here is a randomized interactive
proof for Graph Non-Isomorphism:

V : Pick i ∈ {1, 2} and randomly permute the labels of Gi, send this graph H to the prover.
P : Sends j ∈ {1, 2}, with the idea that Gj ' H if Gi 6' Gj .
V : Accept if and only if i = j.

Note that if G1 6' G2, then there exists a prover such that Pr[V accepts] = 1.
If G1 ' G2, the best any prover can do is to randomly guess, Pr[V samples(G1, H)] = Pr[V samples(G2, H)]
for all H ' G1. This is because the distribution over random graphs H is identical whether V sampled i = 1
or i = 2 so P has no way of “guessing” the value of i given H. That is, suppose the prover P answers with

11-6 Lecture 11: BPP & Interactive proofs

P (H) ∈ {1, 2}. As Pr[V samples H|i = 1] = Pr[V samples H|i = 2], we have Pri,H [P (H) = i] = 1/2. That is,
if G1 ' G2 then for every prover, Pr[V accepts] = 1/2. This can be reduced to 2−k by repeating the protocol k
times and having the verifier accept if and only if all answers from the prover were correct.

So we do not know whether Graph Non-Isomorphism is in dIP, but later we’ll introduce another complexity
class related to randomized interactive proofs which Graph Non-Isomorphism belongs to.

11.2.2 The class IP

We have shown that deterministic proof system does not change the class of language we can determine
(dIP = NP), and there exists some problem (e.g. Graph Non-isomorphism) with an interactive proof
that does not necessarily lie in dIP. So in order to realize the full potential of interaction, we try to replace
the deterministic verifier by probabilistic verifier (a P.T.M.) that may generate its queries and its final choice
using random bits that are not revealed to the prover.

Definition 6 IP
For k ≥ 0, a language L is in IP[k] if there is a k-round interactive proof where the verifier is a P.T.M. such
that:

• (Completeness) x ∈ L→ ∃P : Pr[The k-round verification outputs accept] ≥ 2
3

• (Soundness) x /∈ L→ ∀P : Pr[The k-round verification outputs accept] ≤ 1
3

IP= ∪
c≥0

IP[nc]

Remark : The following observations on the class IP are left as exercise :

• What if the prover can be randomized? Does it change the class IP?
Allowing the prover to be randomized does not change the class IP. The reason is that for any language L,
if a randomized prover P results in making verifier V accept with some probability, then in each step the
prover could instead choose its answer deterministically to maximize the resulting probability of having
the verifier accept (as the best deterministic answer is at least as good as the “average” answer if they are
chosen randomly).

• Does the prover need arbitrary power?
No. Even if the prover is restricted to computing answers in polynomial space, IP does not change. Given
any verifier V, trying all answers, we can compute the optimum prover (which, given x, maximizes the
verifier’s acceptance probability) using poly(|x|) space and 2poly(|x|) time. Hence IP ⊆ PSPACE. The
assignment asks you to carefully describe this argument.

• The probabilities of correctly classifying an input can be made arbitrarily close to 1 by using the same
error reduction procedure for BPP in Lec10:
To replace 2

3 by 1-exp(-m), sequentially repeat the protocol m times and take the majority answer.

References

AB09 S.Arora and B.Barak, Computational Complexity: A Modern Approach, Cambridge University Press,New
York, NY, USA, 2009, pp. 126–151.

