
CMPUT 675: Computational Complexity Theory Winter 2019

Lecture 10 (Feb 7): Probabilistic Turing Machines
Lecturer: Zachary Friggstad Scribe: Jacob Garber

As we saw last class, it is often possible to achieve efficient solutions to problems using randomized algorithms.
Augmenting an algorithm with a random source seems to increase its possible power, and it is an open question
if randomness is inherently required to solve some problems efficiently. In this section we will analyze Turing
machines that are able to make random decisions, and several corresponding computational complexity classes.
As we will define them, these Turing machines are allowed to give incorrect outputs, or even loop forever. Due
to their random nature, we will prove several theorems from probability theory to aid our analysis.

10.1 Probabilistic Turing Machines

A probabilistic Turing machine is a Turing machine M that has two transition functions δ0 and δ1. At each
point of the computation on some input x, the Turing machine randomly chooses with probability 1

2 to apply δ0
or δ1. This choice is made independently of all previous choices. Running M(x) may lead to M accepting x on
some runs and rejecting it on others, so we can treat M(x) as a random variable into the set {accept,reject}.

Like a NDTM, using two transition functions leads to a tree of possible computational paths. If on an input
x every computational branch of the tree eventually halts, we can define Pr[M(x) = accept] as the fraction
of all computational branches that lead to an accepting state. Note in particular that since the computational
tree has a finite size, all leaves in the tree have some non-zero probability of being taken. In this case, we say
M has running time T (n) if for all inputs x ∈ {0, 1}∗, M halts on all possible computational paths within at
most T (|x|) steps.

Using probabilistic Turing Machines, we can define a variety of complexity classes. Though it is possible to
consider classes of arbitrary computational complexity, we will focus most of our attention on ones that run in
polynomial time.

10.2 One-Sided Error and RP

Definition 1 For any function T : N → N, we say a language L is in RTIME(T (n)) if there is a PTM M
that runs in time O(T (n)), and that for all x ∈ {0, 1}∗,

• x ∈ L =⇒ Pr[M(x) = accept] ≥ 2
3

• x /∈ L =⇒ Pr[M(x) = accept] = 0

Using this, we define

RP =
⋃
c> 0

RTIME(nc)

Algorithms of this sort are called “Monte-Carlo” algorithms and have “one-sided error”: inputs not in the
language are always rejected, but if an input is in the language, there is some possibility the algorithm will
incorrectly reject it.

10-1

10-2 Lecture 10: Probabilistic Turing Machines

As we saw last time, an example of this is the Schwartz-Zippel algorithm for nonzero polynomial circuit iden-
tification. Recall that given a polynomial circuit, this algorithm will randomly generate a testing value, and
evaluate the polynomial at the value to see if it is zero. Any zero polynomial will always evaluate to zero, and
thus be rejected, but given a nonzero polynomial, there is a small possibility that the value tested is a root, and
then the polynomial is rejected incorrectly.

From the definition of RP, we immediately have the following.

Proposition 1 P ⊆ RP ⊆ NP

Proof. The first inclusion is simple, since any polynomial time DTM can be interpreted as a PTM with
identical transition functions that makes no errors. For the second inclusion, take any language L ∈ RP with a
polynomial time PTM M . Dropping the probabilities from the transition functions, we can reinterpret M and
its tree of computation as a NDTM. For any x ∈ L, we know Pr[M(x) = accept] ≥ 2

3 , so there must exist some
accepting path within the tree. Conversely, for any x /∈ L, we know Pr[M(x) = accept] = 0, so no accepting
path can exist. Thus L ∈ NP .

10.2.1 Robustness of RP

In the definition of RP, the constant 2
3 seems a bit arbitrary. However, this is only for the sake of convenience:

we can replace it with an arbitrarily low or high value, as we shall see below.

Definition 2 We say a language L is in RP1 if the same conditions as RP hold, except that there is some
fixed constant c > 0 such that for all x ∈ L,

Pr[M(x) = accept] ≥ 1

|x|c

Likewise, we say a language L is in RP2 if the same conditions hold as in RP, except that there is some fixed
constant d > 0 such that for all x ∈ L,

Pr[M(x) = accept] ≥ 1− 1

2|x|d

Claim 1 RP1 = RP2 = RP

Proof. The inclusions RP2 ⊆ RP ⊆ RP1 are immediate from the definitions, so it remains to show RP1 ⊆
RP2. The essential idea of the technique is that given a Turing machine with a high probability of failing, we
can amplify the probability of success arbitrarily high by performing many independent trial runs and accepting
iff at least one of the runs accepts.

Let L ∈ RP1 be decided by a polynomial time PTM M , such that there is a c > 0 so that for all x ∈ L,

Pr[M(x) = accept] ≥ 1

|x|c

Let d > 0 be arbitrary. Consider a new PTM N that performs the following: on input x, run M(x) for |x|c+d
runs, and accept iff at least one of the runs accepts. Note that if x /∈ L, then M will always reject x, and so N
will reject x as well. Otherwise, if x ∈ L, then

Pr[M(x) = reject] ≤ 1− 1

|x|c

Lecture 10: Probabilistic Turing Machines 10-3

and then so over |x|c+d independent runs

Pr[N(x) = reject] ≤
(

1− 1

|x|c

)|x|c+d
Using that

(
1− 1

t

)t ≤ 1
e for arbitrary t > 0, this implies

Pr[N(x) = reject] ≤ 1

e|x|d
≤ 1

2|x|d

and so then

Pr[N(x) = accept] ≥ 1− 1

2|x|d

The PTM N runs in polynomial time because it consists of a polynomial number of independent repetitions of
the calculation M(x), and so L ∈ RP2.

10.2.2 coRP

As usual, we define coRP = {L | L ∈ RP}. More explicitly, a language L is in coRP iff there exists a PTM
M that runs in time p(n) for some polynomial p, and that for all x ∈ {0, 1}∗,

• x ∈ L =⇒ Pr[M(x) = accept] = 1

• x /∈ L =⇒ Pr[M(x) = accept] ≤ 1
3

Algorithms of this sort also have “one-sided error”: in this case, inputs in the language are always accepted,
but if an input is not in the language, there is some possibility the algorithm will incorrectly accept it.

A classic example of a coRP algorithm is the Miller-Rabin primality test. Any numbers this test rejects are
certainly composite by providing a witness of non-primality, but this algorithm may also accept a composite
number if no witnesses can be found (though of course, the odds of this happening can be driven down using
many independent trials).

As expected, we have P ⊆ coRP ⊆ coNP, and that coRP1 = coRP2 = coRP.

10.3 Zero-Sided Error and ZPP

Let M be a PTM and x any input. When analyzing the running time of M on x in the previous section, we
assumed that all branches of the computational tree eventually halted. Now we will relax this restriction: M
is allowed to not halt on some paths, as long as the number of such paths is “essentially zero”. More formally,
for all inputs x, we require that Pr[M(x) terminates] = 1. An example of such a Turing machine is one that
flips a coin until it reaches heads. Of course, it is possible that this Turing machine will always get tails and
flip forever, but the odds of this happening are vanishingly small, in fact 0.

For a PTM Turing machine M and input x, let TM,x be the random variable of the running time of M(x).
Since it is possible for the running time to be unbounded, we do not analyze the worst-case running time, but
instead the average running time. Formally, we say M has expected running time T (n) if for all x ∈ {0, 1}∗, the
expectation E[TM,x] is at most T (|x|). For the coin-flipping Turing machine above, the odds of landing a heads
are exactly 1

2 each time, so the expected number of flips will be 2. We use this to define PTMs that never err.

10-4 Lecture 10: Probabilistic Turing Machines

Definition 3 For any function T : N → N, we say a language L is in ZTIME(T (n)) if there is a PTM M
that has expected running time O(T (n)), and that for all x ∈ {0, 1}∗,

• x ∈ L =⇒ Pr[M(x) = accept] = 1

• x /∈ L =⇒ Pr[M(x) = accept] = 0

Using this, we define

ZPP =
⋃
c> 0

ZTIME(nc)

Algorithms of this sort are often called “Las Vegas” algorithms and have “zero-sided error”: it is impossible for
them to make mistakes. From the definition of ZPP, we can immediately deduce two simple propositions.

Lemma 1 P ⊆ ZPP

Proof. Any polynomial time DTM makes no errors and has guaranteed polynomial running time.

Lemma 2 ZPP = coZPP

Proof. Given any language L ∈ ZPP, its complement L can be recognized by simply negating the output
of the PTM that recognizes L. This implies L ∈ ZPP, and so L ∈ coZPP. Thus ZPP ⊆ coZPP, with
coZPP ⊆ ZPP being similar.

Given our definition of ZPP as being PTMs that make no errors, it seems plausible that it is contained in both
RP and coRP. This is indeed the case, and in fact ZPP is the intersection of those two classes. To prove this,
we first need the following result from probability theory.

Theorem 1 (Markov’s Inequality) Let X be any random variable that satisfies X ≥ 0. Then for any t > 0,

Pr[X ≥ t] ≤ E[X]

t

Proof. We will show the claim when X is a discrete random variable. That is, X take values within a countable
set Ω ⊆ R. Using the definition of expectation,

E[X] =
∑
k∈Ω

Pr[X = k] · k

=
∑
k≥ t

Pr[X = k] · k +
∑
k< t

Pr[X = k] · k

≥
∑
k≥ t

Pr[X = k] · k the second sum is positive since all k ≥ 0

≥
∑
k≥ t

Pr[X = k] · t since all k ≥ t in this sum

= t · Pr[X ≥ t]

The result then follows by rearrangement. For continuous random variables, the proof is similar, but uses
integrals instead of summations.

Lecture 10: Probabilistic Turing Machines 10-5

Theorem 2 ZPP = RP ∩ coRP

Proof.

We first show ZPP ⊆ RP. From this it will follow that coZPP ⊆ coRP, and so then ZPP ⊆ RP∩ coRP by
Lemma 2.

Let L ∈ ZPP with a zero-error PTM M , with expected polynomial running time p(n). Note that this inclusion
is not immediately trivial, since while M makes no errors, some computational branches may run forever. To
convert it to an algorithm with a guaranteed polynomial running time, consider the following PTM N . On
input x, simulate M(x) for 3p(|x|) steps. If M(x) halts in that time, return its answer, and otherwise reject.

First, note that if x /∈ L, then N(x) will always reject. Indeed, if the computation of M(x) halts in time, M will
reject x correctly, and so N will reject it as well. Otherwise if the computation runs overtime x will be rejected
by default. Thus in this case, Pr[N(x) = accept] = 0.

Conversely, suppose x ∈ L, and let Y be the random variable for the running time of M(x). Then using
Markov’s Inequality and that E[Y] ≤ p(|x|),

Pr[N(x) = reject] = Pr[Y > 3p(|x|)] ≤ E[Y]

3p(|x|)
≤ p(|x|)

3p(|x|)
=

1

3

And so Pr[N(x) = accept] ≥ 2
3 . By construction, N also runs in polynomial time, and so L ∈ RP.

Next, we show RP∩coRP ⊆ ZPP. Suppose L ∈ RP∩coRP, with corresponding polynomial time PTMs M1

and M2. Consider the following PTM N . On input x, simulate M1(x) and then M2(x). If M1(x) = accept,
then accept, and if M2(x) = reject, then reject. If neither happen, then loop again until it does.

This algorithm is never incorrect, since if M1(x) = accept, then it is correct that x ∈ L, and if M2(x) = reject,
then it is correct that x /∈ L. We now check the running time.

On some input x, let Y be the random variable of the number of iterations of N(x). Note that if x ∈ L, we have

Pr[N(x) halts after one iteration] = Pr[M1(x) = accept] ≥ 2

3

and likewise that if x /∈ L, then

Pr[N(x) halts after one iteration] = Pr[M2(x) = reject] ≥ 2

3

so recursively,

E[Y] = 1 + Pr[N(x) didn’t halt after one iteration] · E[Y] ≤ 1 +
1

3
E[Y] =⇒ E[Y] ≤ 3

2

Each iteration of the loop runs in guaranteed polynomial time, and so N runs in expected polynomial time
overall. Thus L ∈ ZPP.

10.4 Two-Sided Error and BPP

Having studied algorithms that can err in one or zero directions, we now look at algorithms that can err in both
directions.

Definition 4 For any function T : N → N, we say a language L is in BTIME(T (n)) if there is a PTM M
that has running time T (n), and that for all x ∈ {0, 1}∗,

10-6 Lecture 10: Probabilistic Turing Machines

• x ∈ L =⇒ Pr[M(x) = accept] ≥ 2
3

• x /∈ L =⇒ Pr[M(x) = accept] ≤ 1
3

Using this, we define

BPP =
⋃
c> 0

BTIME(nc)

Algorithms of this sort have “two-sided error”: if the algorithm accepts or rejects the input, we cannot be
sure either way that it is correct. Note that similar to RP, we require the PTMs for this class to halt on all
computational paths.

As with RP and coRP, the definition of BPP is quite robust, since we can replace the value of 2
3 with any

value 1/2 < c < 1. Proving this will require the following theorem from probability theory.

Theorem 3 (Chernoff Bound) Let X1, . . . , Xn be mutually independent random variables over the set {0, 1}
(eg. coin flips). Define

X =

n∑
i= 1

Xi µ = E[X]

Then for all 0 ≤ δ ≤ 1 and c ≥ µ,

Pr[X ≥ (1 + δ)c] ≤ e− δ
2

3 c

Proof. We will prove in the case c = µ. Let t > 0 be arbitrary. Then using Markov’s Inequality,

Pr [X ≥ (1 + δ)µ] = Pr
[
etX ≥ et(1+δ)µ

]
≤

E
[
etX
]

et(1+δ)µ

Then using the definition of X,

E
[
etX
]

= E

[
n∏

i= 1

etXi

]
=

n∏
i= 1

E
[
etXi

]
where the last equality holds by the independence of the random variables. Now for each 1 ≤ i ≤ n, let
µi = E[Xi]. Then,

E
[
etXi

]
= Pr[Xi = 0] · et·0 + Pr[Xi = 1] · et·1 = (1− µi) + µie

t = 1 + µi
(
et − 1

)
Then using 1 + x ≤ ex and linearity of expectation, we have

E
[
etX
]

=

n∏
i= 1

(
1 + µi

(
et − 1

))
≤

n∏
i= 1

(
eµi(e

t−1)
)

= eµ(et−1)

And so

Pr [X ≥ (1 + δ)µ] ≤ eµ(et−1)

et(1+δ)µ
=

(
ee
t−1

et(1+δ)

)µ
This equation is true for any t > 0, and so in particular we can choose a t that minimizes the right hand side.
Using simple calculus, we see this is the case for t = ln(1 + δ), so we conclude

Pr [X ≥ (1 + δ)µ] ≤
(

eδ

(1 + δ)(1+δ)

)µ
≤ e− δ

2

3 µ

where the last inequality follows by the next lemma.

Lecture 10: Probabilistic Turing Machines 10-7

Lemma 3 For all 0 ≤ δ ≤ 1,
eδ

(1 + δ)(1+δ)
≤ e− δ

2

3

Proof. Taking logarithms of both sides, it suffices to show that

δ − (1 + δ) ln(1 + δ) ≤ −δ
2

3

which is equivalent to showing that f(δ) ≤ 0, where

f(δ) =
δ2

3
+ δ − (1 + δ) ln(1 + δ)

First, note that f(0) = 0, so it suffices to show that f ′(δ) ≤ 0 on [0, 1]. Differentiating, we have

f ′(δ) =
2δ

3
− ln(1 + δ) f ′′(δ) =

2

3
− 1

1 + δ

Next, f ′(0) = 0, and a simple calculation shows that f ′(1) < 0. Also, f ′′ only has a single root in [0, 1], and so
the claim follows by Rolle’s Theorem.

Remark 1 Intuitively, the Chernoff Bound states that the odds of achieving a value “far away” from the
expected value decrease exponentially as the number of trials increases. For example, consider a random
variable from flipping a coin, where heads is 1 and tails is 0. For 4 flips, the expected number of heads is 2, but
the odds of flipping 3 heads is 1/4. Not too bad. However, if we have 400 coins, the odds of flipping 300 heads
is now less than 10−24! Visually, the probability distribution of flipping coins (called the binomial distribution)
approximates a Bell curve, and as the number of trials increases, the distribution will “shronk” to the expected
value.

Definition 5 We say a language L is in BPP1 if the same conditions as BPP hold, except that there is some
fixed constant c > 0 such that for all x ∈ {0, 1}∗,

Pr[M(x) is correct] ≥ 1

2
+

1

|x|c

Likewise, we say a language L is in BPP2 if the same conditions hold as in BPP, except that there is some
fixed constant d > 0 such that for all x ∈ {0, 1}∗,

Pr[M(x) is correct] ≥ 1− 1

2|x|d

Claim 2 BPP1 = BPP2 = BPP

Proof. The inclusions BPP2 ⊆ BPP ⊆ BPP1 are immediate from the definitions, so it remains to show
BPP1 ⊆ BPP2. Suppose L ∈ BPP1 has a polynomial time PTM M , such that for some constant c > 0 and
all x ∈ {0, 1}∗,

Pr[M(x) is correct] ≥ 1

2
+

1

|x|c

For an arbitrary d > 0, define the following PTM N : on input x, run M(x) for t = 6|x|3c+d trials and output
the majority answer.

10-8 Lecture 10: Probabilistic Turing Machines

For each 1 ≤ i ≤ t, define the random variable Xi to be 0 if the calculation M(x) in the ith trial is correct, and
1 if it is incorrect. Let X be their sum. The definition of the Xi may seem opposite of normal, but it ensures
N(x) outputs the correct answer iff X < t/2 (that is, iff less than half of all answers are incorrect). So then,

E[X] =

t∑
i= 1

E[Xi] =

t∑
i= 1

Pr[Xi = 1] ≤
t∑

i= 1

(
1

2
− 1

|x|c

)
=
t

2
− t

|x|c

The Xi are all mutually independent random variables, so choosing δ = 1/|x|c, we have by the Chernoff Bound
that

Pr

[
X ≥ (1 + δ)

(
t

2
− t

|x|c

)]
≤ exp

(
−δ

2

3
t

(
1

2
− 1

|x|c

))
= exp

(
− (|x|c − 2) |x|d

)
≤ e−|x|

d

≤ 1

2|x|d

Furthermore, a simple calculation shows

(1 + δ)

(
1

2
− 1

|x|c

)
=

1

2
− 1

2|x|c
− 1

|x|2c
<

1

2
=⇒ (1 + δ)

(
t

2
− t

|x|c

)
<
t

2

And so thus,

Pr[N(x) is incorrect] = Pr[X ≥ t/2] ≤ Pr

[
X ≥ (1 + δ)

(
t

2
− t

|x|c

)]
≤ 1

2|x|d

which implies

Pr[N(x) is correct] ≥ 1− 1

2|x|d

By construction, N will have polynomial overhead in the length of |x|, and thus L ∈ BPP2.

10.4.1 BPP and Other Classes

From the definition of BPP, it is immediate that RP ⊆ BPP and coRP ⊆ BPP. For other complexity
classes, the case is not so clear. For example, it is unlikely that NP ⊆ BPP, since then Claim 2 would imply
all NP-complete problems have efficient randomized algorithms. However, it is conjectured that BPP ⊆ NP,
and in fact we have even the following:

Conjecture 1 BPP = P

In this case, all the probabilistic complexity classes with dashed lines between them in Figure 10.4.1 would
collapse to P. This seems quite surprising, since it would mean all probabilistic algorithms in BPP can be
derandomized with only a polynomial loss of efficiency. However, based on several minimal assumptions about
circuit complexity, most researchers today believe that this is possible. (See [AB09] chapter 20 for more details.)

References

AB09 S. Arora and B. Barak, Computational Complexity: A Modern Approach, Cambridge University Press,
New York, NY, USA, 2009.

Lecture 10: Probabilistic Turing Machines 10-9

P

ZPP

RP

NP

coRP

coNP

BPP

Figure 10.1: Known Inclusions Between Probabilistic Complexity Classes

