
CMPUT 675: Computational Complexity Theory Winter 2019

Lecture 8 (Jan 31): Time/Space Tradeoff for SAT and Circuits
Lecturer: Zachary Friggstad Scribe: Noah Weninger

8.1 Time/Space Tradeoff for SAT

Claim 1 SAT /∈ TISP(na, nb) for all a ≥ 1, b > 0 such that a(a+b2) < 1.

To prove this claim, we instead show that NTIME(n) 6⊆ TISP(na, nb). The result then follows from the
discussion at the end of the previous lecture. But first, we need two lemmas.

Lemma 1 TISP(na, nb) ⊆ Σ2TIME(n
a+b
2).

Proof. Let L be a language in TISP(na, nb) with machine M deciding it, and take d = a−b
2 . We can determine

whether x ∈ L by verifying the execution of a sequence of nd snapshots of M , where adjacent snapshots have
O(na−d) steps in between. Formally, x ∈ L iff there are snapshots C0, . . . , Cnd such that:

(a) C0 is the initial snapshot of M on x.

(b) Cnd is an accepting snapshot.

(c) Ci+1 is obtained from Ci after O(na−d) steps.

So, we have that

x ∈ L⇔ ∃C0, . . . , Cnd ∀i [Ci, Ci+1 satisfy (a), (b), (c)].

It takes O(nb ·nd) time for the TM to seek ahead to the proper Ci when given i. Checking if Ci+1 can be reached

from Ci in O(na−d) steps takes O(na−d) = O(n
a+b
2) time by loading dedicated tapes with the tape contents of

Ci, moving the heads of these tapes to their position in Ci and then then executing the instructions from M
for O(na−d) steps starting with the state encoded in Ci.

Finally, it is easy to verify (a) and (b) hold in O(nb) once we have seeked ahead to the proper Ci. So, the

total time to check if the properties are satisfied for some i in some sequence of configurations is O(n
a+b
2) and

therefore L ∈ Σ2TIME(n
a+b
2).

Lemma 2 For c, d ≥ 1, NTIME(n) ⊆ DTIME(nc)⇒ Σ2TIME(nd) ⊆ NTIME(ncd).

Proof. Assume NTIME(n) ⊆ DTIME(nc).

Let L be a language in Σ2TIME(nd) with a TM M that decides the predicate in nd steps on input x where

|x| = n. Since L ∈ Σ2TIME(nd), x ∈ L iff ∃u ∈ {0, 1}|x|d such that ∀v ∈ {0, 1}|x|d M(x, u, v) = accept. Note
that u and v, the assignments to quantifier variables, may be of larger size than necessary for some particular
x. To handle this we can assume that M ignores any extra bits in u and v.

8-1

8-2 Lecture 8: Time/Space Tradeoff for SAT and Circuits

Define L′ = {(x, u) : |u| = |x|d and ∃v ∈ {0, 1}|x|d such that M(x, u, v) = reject}. For n = |(x, u)|,
L′ ∈ NTIME(n): we can nondeterministically guess a certificate v in |x|d ∈ O(n) steps, then deterministically

run M in O(n) steps. Then by our assumption L′ ∈ DTIME(nc) and so is its complement L
′
.

Let M be a TM which decides L
′

in time nc. Then, using the definition of L, x ∈ L⇔ ∃u ∈ {0, 1}|x|d such that
M(x, u) = accept. We know M(x, u) runs in O((|x|+ |u|)c) = O(|x|cd) time, so L ∈ NTIME(ncd).

Proof of Claim 1. Suppose that NTIME(n) ⊆ TISP(na, nb). Let k = a+b
2 < 1. Then NTIME(n1/k) ⊆

TISP(na/k, nb/k). By Lemma 1, TISP(na/k, nb/k) ⊆ Σ2TIME(n
a+b
2k). By definition, we know TISP(na, nb) ⊆

DTIME(na) so by our assumption NTIME(n) ⊆ DTIME(na). Then by Lemma 2, NTIME(n1/k) ⊆
NTIME(na

a+b
2k). But 1

k > aa+b2k which contradicts the non-deterministic time hierarchy theorem that was
not explicitly covered in a previous lecture, but can be found in the Chapter 3 of the course text [AB09].

8.2 Circuits

We will now shift our discussion over to Boolean circuits. For the purposes of this discussion, we will make a
few assumptions about the structure of a circuit. Our definition can be generalized in various ways, but this
simple form will be sufficient here.

A circuit is a directed acyclic graph which describes the flow of some Boolean computation. Edges are implied
to always point towards the right. All vertices belong to one of the following gate types:

AND

OR

NOT

constant value 0 1

input xi

There is one output, which is the only vertex that has a fan out of zero. All other nodes have arbitrary non-zero
fan out. A circuit with n inputs has vertices with fan in zero labeled x1, . . . , xn, though notice that not all
vertices with fan in zero are inputs; some may be constants.

The type of the gate imposes a requirement on the fan in of the vertex. As suggested by the visual represen-
tations, AND and OR gates have a fan in of two. NOT gates have a fan in of one. Constant gates and inputs
have a fan in of zero.

To compute the output of a circuit on some input x1, . . . , xn, simply propagate values across edges, computing
the appropriate functions at gates, until the output is known. Using this or any similar approach, the output
of a circuit can be computed in an amount of time polynomial in its size. For a circuit C, we let |C| denote the
number of vertices in the circuit including input and constant vertices.

Definition 1 (Circuit Family)

A family of circuits is the set {Cn}n≥0 where each Cn has n inputs. We say a circuit family has size f(n) if
|Cn| ∈ O(f(n)).

Definition 2 (SIZE(f(n))(f(n))(f(n)))

L ∈ SIZE(f(n)) iff there exists a family of circuits {Cn} of size f(n) where ∀x ∈ {0, 1}∗ x ∈ L⇔ C|x|(x) = 1.

Lecture 8: Time/Space Tradeoff for SAT and Circuits 8-3

Claim 2 All unary languages L are in SIZE(n).

Proof. Recall that a unary language only contains strings of the form 1n. So, for every 1n ∈ L, the corresponding
Cn in the circuit family simply needs to check that every input xi = 1. This is easily accomplished by a chain
of AND gates:

x1

x2

x3

...
. . .

xn

These circuits are of size 2n− 1, which is O(n). When 1n /∈ L, we use the circuit that always outputs 0:

0

Which is O(1), so the size of the family overall is linear.

Corollary 1 There are undecidable languages in SIZE(n).

For example, Unary-Halt = {1n : the bits of n encode a TM which halts on the empty string}.

This example illustrates how the notion of SIZE(f(n)) is alone lacking in constraint: it suffices that an ap-
propriate circuit family exists even if that circuit family cannot be constructed within f(n) time (if at all). To
remedy this we introduce the notion of a P-uniform circuit family.

Definition 3 (P-uniform circuit family)

A language L has a P-uniform family of circuits {Cn} if {Cn} has polynomial size and we can compute any
circuit Cn in this family in poly(n) time.

Theorem 1 L has a P-uniform family of circuits iff L ∈ P.

Proof. First assume L has a P-uniform family of circuits. Then we can construct a polytime TM M to decide
L. Given some input x, have M construct C|x| in polytime and then evaluate C|x|(x) in polytime. Therefore
L ∈ P.

The proof for the other direction follows a similar structure to the Cook-Levin theorem, which is detailed in
Lecture 4. The difference is instead of constructing a SAT instance from a TM we can instead construct a circuit
family. Here we present a rough sketch of the proof. Suppose L ∈ P and let M be a poly-time TM deciding L
in time p(n).

Fix an input length n. Recall that we had defined the following variables:

8-4 Lecture 8: Time/Space Tradeoff for SAT and Circuits

Xc,γ,τ : indicates that cell c contains γ at time τ

Yh,τ : indicates that the tape head is at position h at time τ

Zq,τ : indicates that the state is q at time τ

All variables from the Cook-Levin reduction will be vertices in the circuit, plus additional vertices to help connect
them together. All variables with τ = 0 will be constant vertices except for the |x| variables corresponding to
the first |x| positions of the input tape, those will be inputs to the circuit. The other constant vertices are
determined by the initial snapshot conditions: the start state must be qstart, the heads must be at position 0,
and all other tape cells contain the blank �.

All other variables correspond to an OR gate. We briefly sketch how they are placed in the circuit. For example,
one condition is where the TM writes γ′ to c and moves to cell h′ and state q′ if γ is on the tape cell h and q is
the state at time τ :

Xc,γ,τ ∧ Yh,τ ∧ Zq,τ ⇒ Xc,γ′,τ+1 ∧ Yh′,τ+1 ∧ Zq′,τ+1.

Note, this implication uniquely identifies the values of the variables on the right hand side if the left-hand side
is true. We can use an AND vertex to and all of the variables (i.e. outputs of their vertices) and then have
the output of this AND vertex feed into the inputs of all OR vertices for the variables on the right side of this
implication. Using a similar trick with other implications in the proof of the Cook-Levin theorem and noting
that every variable will be uniquely defined by just the initial conditions and implications from this theorem
can be used in a careful proof by induction that the outputs of the vertices for the variables correspond to their
actual value when computing M(y) for any y with |y| = n.

Finally, the output vertex is the one corresponding to variable Zqaccept,p(|x|). There may be more than one vertex
with fan out 0, we can prune those efficiently to fit our convention that circuits only have one output.

Furthermore, careful inspection of the proof shows this reduction is computable in logarithmic space. Further
details are given in Section 6.2 of [AB09].

Corollary 2 Circuit-Value = {(c, x) : c(x) = 1} is P-complete with respect to implicitly computable log space
reductions. The proof follows by hard-coding the inputs of the previous proof.

Definition 4 (P/poly)

P/poly = ∪c≥1SIZE(nc) (languages having a polynomial size circuit family)

Theorem 2 (Karp-Lipton ’80)

NP ⊆ P/poly ⇒ PH = ΣΣΣp2.

Proof. Assume NP ⊆ P/poly.

Recall ΠΠΠ2SAT = {φ : φ is an unquantified boolean formula where ∀u ∈ {0, 1}n ∃v ∈ {0, 1}n φ(u, v) = true}.

Consider L = {(φ, u) : ∃v ∈ {0, 1}|u| φ(u, v) = true}. Clearly L ∈ NP: an assignment to v such that
φ(u, v) = true can be used as a polytime verifiable certificate. So by our assumption there exists a polynomial
size circuit family {Cn} for L.

Up until this point we have only considered circuits with a single output. However, we can safely extend our
definition to allow multiple outputs, by observing that a circuit with m outputs can be effectively simulated with
only polynomial slowdown by a list of circuits C1, . . . , Cm which respectively produce each of the m outputs.

Lecture 8: Time/Space Tradeoff for SAT and Circuits 8-5

Given that a polysize circuit family can decide L, there must exist a polysize circuit family {C ′n} with multiple
outputs that can produce certificates for L, that is ∀(φ, u) ∈ L, C ′|(φ,u)|(φ, u) = v and φ(u, v) = true. This
follows using arguments similar to how one shows that if P = NP then in fact we can efficiently produce a
circuit for any yes instance of any language in NP. Then for some φ, we can “guess” a circuit C ′ to produce a
certificate:

φ ∈ ΠΠΠ2SAT⇔ ∃w ∈ {0, 1}poly(n) ∀u ∈ {0, 1}n [w encodes a circuit C ′ and φ(u,C ′(φ, u)) = true]

Therefore ΠΠΠ2SAT ∈ ΣΣΣp2. Since we know ΠΠΠ2SAT is ΣΣΣp2-complete with respect to Karp reductions, we have that
ΠΠΠp

2 ⊆ ΣΣΣp2. If we take some L ∈ ΣΣΣp2 then L ∈ ΠΠΠp
2 so L ∈ ΣΣΣp2 and thus L ∈ ΠΠΠp

2. It follows that ΠΠΠp
2 = ΣΣΣp2, which

implies PH = ΣΣΣp2 by a theorem from lecture 7, which can also be found in [AB09] as Theorem 5.4.

References

AB09 S. Arora and B. Barak, Computational Complexity: A Modern Approach, Cambridge University Press,
New York, NY, USA, 2009.

BM04 P. Beame and T. Moore, Time-Space Tradeoffs for SAT, 2004.

