
CMPUT 675: Computational Complexity Theory Winter 2019

Lecture 7 (Jan 29): Alternating Turing Machines
Lecturer: Zachary Friggstad Scribe: Zach Goldthorpe

7.1 Read-Once Verifiers

In the previous lecture, we showed that the language

Dirpath := {(G, s, t) : G is a directed graph with an s-t path}

was NL-complete with respect to implicit log-space reductions. We can in fact show that Dirpath ∈ co-NL,
which by its NL-completeness would imply that NL = co-NL. In order to do so, we provide an equivalent
reformulation of NL via a logarithmic-space analogue of NP verifiers.

Definition 1 A read-once verifier is a verifier M (a Turing machine with two read-only input tapes) such
that the head of the second input tape cannot traverse leftwards.

We can view the second input tape as an interaction between the verifier and a “prover,” who through this
dialogue aims to convince the verifier that the input does lie in the language. Due to the memory constraints of
the language class NL, the constraint that the second tape can only be read as a stream restricts a logarithmic-
space verifier from memorising the entirety of any certificate.

Theorem 1 A langauge is in NL iff it can be decided by a read-once logarithmic-space verifier.

Proof. Suppose L ∈ NL, then we have a non-deterministic Turing machine M that can decide L using
logarithmic space. We can emulate the computation path of M accepting an input with a read-once verifier
M ′, provided that the certificate describes which transition function of M to follow. Explicitly, M ′ given input
(x, y) will simulate a specific computation path of M on x where at step i of the computation, M ′ will simulate
M following transition function δb if the ith bit of y is b. M ′ will accept (x, y) iff this simulation of M on x
leads to an accepting state, and will otherwise reject.

Since M used logarithmic space, its simulation by M ′ will also consume only logarithmic space. Further, as
each bit of y is read at most once, and in the order provided, M ′ is indeed a read-once verifier. If x ∈ L, then
there will be some computation path where M(x) accepts, so there exists a string y of which transition function
in M to follow which leads M ′(x, y) to accept; conversely, if M ′(x, y) accepts, then by following the transition
functions of M according to y, the computation of M on x leads to an accepting state, meaning x ∈ L.

Conversely, suppose L can be decided with a read-once logarithmic-space verifier M ′, then we can non-
deterministically check all certificates for an input on M ′ with a nondeterministic Turing machine M . Ex-
plicitly, M given input x will simulate M ′ on input x. Whenever M ′ checks the head of its second tape, the
two transition functions of M will simulate this head pointing to a 0 and a 1, separately. Have M then accept
the input x iff one of these simulations of M ′ leads M ′ to an accepting state.

As M ′ was a read-once verifier, the nondeterministic Turing machine M does not have to memorise previous
bits of the second tape and can always make an arbitrary choice for the next queried bit. If x ∈ L, then for
some certificate y, we have M ′(x, y) = accept, meaning for some computation path of M on x do we see M

7-1

7-2 Lecture 7: Alternating Turing Machines

arrive at its accepting state. Conversely, if some computation path of M on x leads to an accepting state, then
by collecting the bits used in simulating M ′ along this computation path to form the certificate y, we have that
M ′(x, y) = accept, meaning x ∈ L.

Using this equivalent view of NL, we can finally show the following:

Theorem 2 Dirpath ∈ co-NL.

Proof. Let (G, s, t) be a problem instance encoding a graph G with two nodes s and t. We implicitly define
the read-once verifier witnessing Dirpath ∈ NL by describing the appropriate certificate that proves there is
no s-t path in G.

Let v1, . . . , vn enumerate the nodes of G, then for 0 ≤ i ≤ n define Ri to be the set of all distinct vertices vj in
G reachable from s in at most i steps. The verifier will know that R0 = {s} by definition, so the certificate will
gradually convince the verifier of the contents of each Ri up until Rn, where the verifier can then check t /∈ Rn

to be convinced that there is no s-t path in G. We do so in two stages:

Step 1: Given that the verifier knows |Ri|, we can construct a read-once certificate for which the verifier can
be convinced of an enumeration of the elements in Ri.

The certificate will present to the verifier each vj ∈ Ri in order of strictly increasing index j, following
each node with a proof that vj ∈ Ri. The verifier can check using logarithmic space that the indices are
indeed strictly increasing, so this will convince the verifier that all nodes presented are distinct.

For each vj ∈ Ri presented, the certificate will be followed by an s-vj path using at most i edges. The
verifier can easily trace this path and count the number of edges in logarithmic space, and can also confirm
that each edge is indeed an edge of G by querying the encoding of G.

Thus, the verifier can be convinced of an enumeration of Ri by confirming each presented vj is in Ri and
then counting the number of vertices to ensure that it is exactly |Ri|.

Step 2: Given that the verifier knows |Ri| for i < n, we can construct a read-once certificate for which the
verifier can be convinced of |Ri+1|.
The certificate will present to the verifier each node vj in order by its index j, following each node with
either a proof that vj ∈ Ri+1, or a proof that vj /∈ Ri+1. The verifier can then count the nodes vj ∈ Ri+1

and be convinced of |Ri+1|.
For each vj ∈ Ri+1, the certificate need only present an s-vj path using at most (i+ 1) edges, as before.
If instead vj /∈ Ri+1, then the certificate will present an enumeration of each vk ∈ Ri as per step 1, then
the verifier can confirm that (vk, vj) is not an edge in G. This will convince the verifier that vj /∈ Ri+1.

Following these steps inductively given that R0 = {s} is known a priori, the verifier can be convinced of |Rn|
with a read-once certificate. After this, as per step 1, the certificate can just enumerate Rn and the verifier can
ensure that t /∈ Rn, convincing the verifier that there is no s-t path.

Corollary 1 NL = co-NL.

For any language L decidable by a read-once verifier M in O(f(n))-space for some time-computable f(n) ∈
Ω(log n), we can step through the same proof as above but considering the configuration graph for M on any
input x to create a read-once verifier M ′ which uses O(f(n))-space to decide if x /∈ L. This modification then
proves:

Theorem 3 (Savitch, 1980) For any space-constructible function f(n) ∈ Ω(log n),

NSPACE(f(n)) = co-NSPACE(f(n))

Lecture 7: Alternating Turing Machines 7-3

7.2 Polynomial-Time Hierarchy

Consider the language

Exact-Ind-Set := {(G, k) : graph G has a maximum independent set of size exactly k}

We know that the larger language Ind-Set of all pairs (G, k) where G is a graph with an independent set of
size at least k is NP-complete, but is Exact-Ind-Set ∈ NP? Is it in co-NP? The language relies on two
quantifiers:

∃ I independent set ∀ I ′ independent set : |I| = k, |I ′| ≤ k

The universal quantifier makes a certificate to see Exact-Ind-Set ∈ NP hard to create: how do we prove that
there is no independent set of size strictly larger than k? Similarly, the existential quantifier makes a certificate
to see Exact-Ind-Set ∈ co-NP hard to create: how do we prove that there is no independent set of size at
least k? That Exact-Ind-Set lies in NP or co-NP are both open problems, but theorists conjecture that
neither is the case.

Nonetheless, if P = NP, then in fact Exact-Ind-Set ∈ P: given the language Ind-Set would be polynomial-
time solvable, we can determine in polynomial time if a graph G does not have an independent set of size at
least (k + 1) while also determining that it does have an independent set of size at least k. These would imply
that the maximum independent set of G has size precisely k.

Similarly, consider the language

EQ-CNF := {(φ, k) : φ is a CNF with an equivalent CNF ψ where |ψ| ≤ k}

This language does not seem to be in NP since checking equivalence of two CNF’s on n variables seems to
require checking exponentially-many different variable assignments. The language also does not seem to be in
co-NP because there is no clear way to certify that an equivalent CNF to φ of length at most k cannot exist.
Again, both problems are open, and EQ-CNF relies on a similar sentence with two quantifiers:

∃ψ CNF with |ψ| ≤ k ∀x : φ(x) = ψ(x)

If P = NP, then again EQ-CNF ∈ P: since the language SAT would become polynomial-time solvable, we can
verify that two CNF’s are equivalent by checking if φ↔ ψ is satisfiable (which is iff φ and ψ are inequivalent),
and the existence of an equivalent CNF ψ for φ with |ψ| ≤ k becomes a problem in NP, which is then a problem
in P.

We can even refine the above language and consider

Exact-EQ-CNF := {(φ, k) : φ is a CNF where the smallest equivalent CNF ψ has |ψ| = k}

which relies on a sentence with four quantifiers:

∃ψ CNF with |ψ| = k ∀ψ′ CNF with |ψ′| < k ∃x∀y : φ(y) = ψ(y) and φ(x) 6= ψ′(x)

This problem seems to lie in an even larger class than EQ-CNF, but if P = NP, then Exact-EQ-CNF ∈ P:
we have seen that we would have EQ-CNF ∈ P, so we can then determine in polynomial time both that φ has
an equivalent CNF ψ with |ψ| ≤ k and that φ does not have an equivalent CNF ψ with |ψ| ≤ k− 1. This would
decide in polynomial time if the minimum equivalent CNF for φ has size exactly k.

Despite how these classes of languages are seemingly larger than both NP and co-NP, they all seem to collapse
if P = NP. To explore the extent to which this is the case, we define a new family of complexity classes.

7-4 Lecture 7: Alternating Turing Machines

Definition 2 For k ≥ 1, let ΣP
k denote the complexity class of languages L where there exists a polynomial-time

Turing machine M taking (k + 1) inputs such that

x ∈ L ⇐⇒ ∃u1 ∀u2 ∃u3 . . .Quk : M(x, u1, . . . , uk) = accept

Q will be ∀ if k is even and ∃ otherwise.

For example, the complexity class ΣP
1 collects all languages L where there exists a polynomial-time Turing

machine M taking 2 inputs such that x ∈ L iff ∃y : M(x, y) = accept, which is precisely the class NP.

Dually, we also introduce the classes ΠP
k := co-ΣP

k for k ≥ 1 of all languages L for which there exists a polynomial-
time Turing machine M taking (k + 1) inputs so that x ∈ L iff ∀u1 ∃u2 . . .Quk : M(x, u1, . . . , uk) = accept.
From these definitions, it is relatively straightforward to see that ΣP

k ⊆ ΠP
k+1 and likewise that ΠP

k ⊆ ΣP
k+1.

Indeed, suppose L ∈ ΣP
k as witnessed by the Turing machine M that takes (k + 1) inputs. By modifying M to

take (k + 2) inputs where it completely ignores the new input u0, we have a polynomial-time Turing machine
which accepts a string x iff ∀u0 ∃u1 . . .Quk : M ′(x, u0, . . . , uk) = accept, showing L ∈ ΠP

k+1. The argument is

analogous for seeing that ΠP
k ⊆ ΣP

k+1.

Therefore, we can define the polynomial-time hierarchy complexity class using either of these families:

Definition 3 PH :=
⋃

k≥1 ΣP
k =

⋃
k≥1 ΠP

k .

Note that PH ⊆ PSPACE: if L ∈ PH, then L ∈ ΣP
k for some k, which means we have a polynomial-time

Turing machine M such that x ∈ L iff ∃u1 ∀u2 . . .Quk : M(x, u1, . . . , uk) = accept. We can then recursively
try to populate each variable u1, . . . , uk with candidate strings—which are at most polynomial in |x|—and then
simulate M(x, u1, . . . , uk). As k is fixed and M is polynomial-time computable, this will only use polynomial
space in |x|. Therefore, L ∈ PSPACE. However, the question of whether PH = PSPACE remains open.

Theorem 4 If P = NP, then P = PH.

The proof of the above theorem follows from the theorem below by recalling that if P = NP, then NP = co-NP,
and since NP = ΣP

1 , this would mean ΣP
1 = ΠP

1 and thus PH = ΣP
1 = NP = P.

Theorem 5 If ΣP
k = ΠP

k for some k ≥ 1, then PH = ΣP
k .

Proof. We proceed by induction on i ≥ k to show that ΣP
i ∪ΠP

i ⊆ ΣP
k . Note that this is already true for i < k

since ΣP
i ⊆ ΠP

i+1 and ΠP
i ⊆ ΣP

i+1.

The claim when i = k holds by assumption, so suppose ΣP
i ∪ ΠP

i ⊆ ΣP
k for some i ≥ k. Let L ∈ ΣP

i+1, then we
have a polynomial-time Turing machine M such that x ∈ L iff ∃u1 ∀u2 . . .Qui+1 : M(x, u1, . . . , ui+1) = accept.
Consider now the language

L′ := {(x, u1) : ∀u2 ∃u3 . . .Qui+1,M(x, u1, . . . , ui+1) = accept}

then L′ ∈ ΠP
i ⊆ ΣP

k . Thus, we have a polynomial-time Turing machine M ′ such that (x, u1) ∈ L′ iff
∃v1 ∀v2 . . .Qvk : M ′(x, u1, v1, . . . , vk) = accept. Therefore,

x ∈ L ⇐⇒ ∃u1 : (x, u1) ∈ L′ ⇐⇒ ∃u1 ∃v1 ∀v2 . . .Qvk : M ′(x, u1, v1, . . . , vk) = accept

⇐⇒ ∃(u1, v1)∀v2 ∃v3 . . .Qvk : M ′(x, u1, v1, . . . , vk) = accept

Lecture 7: Alternating Turing Machines 7-5

showing that in fact L ∈ ΣP
k since by merging u1 and v1 we can take M ′ to be a Turing machine with (k + 1)

inputs rather than (k + 2). Therefore, ΣP
i ⊆ ΣP

k . Dually, if L ∈ ΠP
i+1 = co-ΣP

i+1, then L̄ ∈ ΣP
i+1 ⊆ ΣP

k = ΠP
k ,

meaning L = ¯̄L ∈ co-ΠP
k = ΣP

k . Therefore, ΣP
i+1 ∪ΠP

i+1 ⊆ ΣP
k .

By induction, it follows that ΣP
i ⊆ ΣP

k for every i ≥ 1, and so ΣP
k ⊆ PH =

⋃
i≥1 ΣP

i ⊆ ΣP
k .

The above theorems demonstrate in particular that if P = NP, then all of the layers of the polynomial hierarchy
collapse to the same single complexity class P.

7.2.1 PH-completeness

As usual, define a language L to be PH-complete if L ∈ PH and any language in PH is Karp-reducible in
polynomial time to L. It turns out the very existence of PH-complete languages would also collapse part of the
polynomial hierarchy:

Theorem 6 If there is a PH-complete language, then PH = ΣP
k for some k ≥ 1.

Proof. Suppose L is PH-complete, then since L ∈ PH, then L ∈ ΣP
k for some k ≥ 1. Let M be a polynomial-

time Turing machine sucvh that x ∈ L iff ∃u1 ∀u2 . . .Quk : M(x, u1, . . . , uk) = accept. Let L′ ∈ PH be
arbitrary now, then since L′ ≤P L, we have a polynomial-time computible function f(n) such that x ∈ L′ ⇐⇒
f(x) ∈ L. Therefore, x ∈ L′ iff ∃u1 ∀u2 . . .Quk : M(f(x), u1, . . . , uk) = accept, showing that L′ ∈ ΣP

k .

Therefore, it is unlikely that PH-complete languages exist. This also provides evidence suggesting PH 6=
PSPACE, as otherwise the PSPACE-complete language TQBF would also be complete for PH and the PH
then collapses.

However, for each layer ΣP
k , there do exist ΣP

k -complete languages with respect to polynomial-time Karp reduc-
tions:

Theorem 7 The language

Σk-SAT := {φ CNF : ∃u1 ∀u2 ∃u3 . . .Quk, φ(u1, . . . , uk) = true}

is ΣP
k -complete.

Proof. The proof is analogous to the proof of the Cook-Levin theorem.

7.3 Alternating Turing Machines

Definition 4 An alternating Turing machine is a Turing machine with two transition functions δ0, δ1 where
each state q other than the halting states qaccept, qreject have a quantifier Qq ∈ {∀,∃}.

Given an input x into an alternating Turing machine, consider its computation tree of all possible combinations
of transition functions that can be followed with the input x. To define when the Turing machine accepts x, we
define temporarily the notion of “eventually accepting” inductively on this tree:

• the leaf nodes that are the accepting state qaccept are “eventually accepting”

• a non-leaf node q with Qq = ∀ is “eventually accepting” if every child node is “eventually accepting”

7-6 Lecture 7: Alternating Turing Machines

• a non-leaf node q with Qq = ∃ is “eventually accepting” if at least one child node is “eventually accepting”

The alternating Turing machine then accepts x iff the starting state qstart is “eventually accepting.”

For example, in the computation tree below (where ‘A’ denotes accept and ‘R’ denotes reject), the blue
nodes are the “eventually accepting” states, and the input is accepted because the topmost node is “eventually
accepting.”

∃

∀

A

δ0

R

δ1

δ0

∃

∀

A

δ0

A

δ1

δ0

R

δ1

δ1

Note that alternating Turing machines generalise nondeterministic Turing machines, as the latter can be con-
sidered as an alternating Turing machine where every non-halting state is quantified by ∃.

We can now construct a new family of complexity classes based on alternating Turing machines:

Definition 5 For a function f : N → N, let ATIME(f(n)) be the class of languages L such that there exists
an alternating Turing machine M such that M decides L, and when given input x, the machine M will halt in
O(f(|x|)) many steps along any path in the computation tree for M on x.

Example 1 The class AP :=
⋃

c≥1 ATIME(nc) is exactly PSPACE.

Proof. Just as in the argument that PH ⊆ PSPACE, we can simulate a polynomial-time alternating Turing
machine with a polynomial-space Turing machine by recursing on each choice of transition function, and then
can determine if a node is “eventually accepting” recursively as per the definition.

Conversely, PSPACE ⊆ AP because the PSPACE-complete language TQBF of true quantified Boolean
formulae can be solved by an alternating Turing machine which for each quantified variable Qx in a TQBF
instance will nondeterministically try both assignments of x, and will quantify the state which tries both
assignments with Q.

7.4 Lower Bounds on Solving SAT

Definition 6 For a pair of functions t, s : N → N, define the complexity class TISP(t(n), s(n)) to collect all
languages that are decidable by an ordinary Turing machine which uses O(s(|x|)) space and runs in O(t(|x|))
time on any input x.

Theorem 8 For any a ≥ 1 and b > 0 satisfying a
(
a+b
2

)
< 1, then SAT /∈ TISP(na, nb).

Lecture 7: Alternating Turing Machines 7-7

We do not present a proof in this lecture, but we will describe the main ideas of the proof here. To do so, we
introduce yet another family of complexity classes:

Definition 7 For k ≥ 1 and a function f : N → N, let ΣkTIME(f(n)) be the class of all languages decidable
by an alternating Turing machine M such that on any computation path for an input x:

• M runs in O(f(|x|))-time along this path

• the quantifiers on the nodes along this path swap at most (k − 1) times

• the quantifier of the starting node is ∃

Also, we need a refinement of the Cook-Levin theorem, which provides a remarkably efficient reduction from
any language in NTIME(n) to SAT:

Theorem 9 For a language L ∈ NTIME(n), we have L ≤P SAT via a reduction f satisfying for any input x

1. |f(x)| ∈ O(|x| log |x|)

2. After O(|x|) time and O(log |x|) space in preprocessing, any individual bit f(x)i can be determined in
O(log |x|) time and space

Proof. Omitted.

Here, “preprocessing” refers to checks such as finding the length of the input x, et cetera.

The proof of theorem 8, then proceeds in two steps:

1. First we will show NTIME(n) 6⊆ TISP(na, nb).

2. Then, we use the efficient reductions from languages in NTIME(n) to SAT to deduce SAT /∈ TISP(na, nb).
The crux of the argument is that if SAT can be solved by a Turing machine M which is constrained by
O(na) time and O(nb) space, then we can show NTIME(n) ⊆ TISP(na, nb) also. Indeed, for any
L ∈ NTIME(n), let f : N → N be an efficient reduction from L to SAT as per theorem 9. For any
instance string x, we have after O(|x|) time and O(log |x|) space in preprocessing—both which fit in the
constraints of TISP(na, nb)—we can run M(f(x)) in O(|f(x)|a) time and O(|f(x)|b) space by using an
additional O(log |x|) time and space whenever a bit of f(x) is queried. While this does not exactly fit in
TISP(na, nb), we can adjust the constants a, b thanks to the slackness of the constraint a

(
a+b
2

)
< 1 to

account for the logarithmic factors.

