
CMPUT 675: Computational Complexity Theory Winter 2019

Lecture 6 (Jan 24): Space Complexity
Lecturer: Zachary Friggstad Scribe: Laura Petrich

6.1 Space-Bounded Computation

Space-bounded computation can be thought of as the memory requirements of computational tasks. Recall
that only cells in read-write work tapes visited by the tape head (not the input tapes) count towards the space
bound. In contrast with time-bounded computation, we are interested in computations that run in sublinear
space, i.e, with a workspace smaller than the input length. We can define this as follows:

Definition 1 (Space-bounded computation) For any function S : N → N and language L ⊆ {0, 1}∗. We
say that L ∈ DSPACE(S(n)) if there is a TM M deciding L that uses at most c · S(n) nonblank tape locations
on inputs of length n. For a non-deterministic Turing Machine, L ∈ NSPACE(S(n)) can be defined similarily.

Previously it was discussed that for any function f(n) ∈ Ω(log n) (space-constructable function):

DTIME(S(n)) ⊆ SPACE(S(n)) ⊆ NSPACE(S(n)) ⊆ DTIME(2O(S(n)))

The first inclusion is clearly because the heads of a TM that uses time O(S(n)) can only visit cells that are
O(S(n)) steps away from the initial cell. The second is for the usual reason that determinism is a special case
of nondeterminism. The last is a bit more subtle and will be discussed momentarily.

6.2 Configuration Graph

A snapshot C of a TM with using space O(f(n)) when given an input with length n can be described with
O(f(n) + log n) bits: O(1) to describe the state, O(f(n)) to describe all contents of the work tapes, O(log f(n))
to describe the positions of the heads on the work tapes, and O(log n) to describe the position of the head
in the input tape. Our entire space complexity discussion concerns functions f(n) ≥ log2 n, so we simply say
that a configuration C can be described with at most c · f(n) bits where c is a constant depending only on the
machine M (not on the input to the machine). That is, a snapshot C for a computation with input x is some
{0, 1}c·f(|x|).

We define the configuration graph of M on an input x, denoted GM,x, as a directed graph with nodes
corresponding to valid snapshots of M on x. Each node in the configuration graph represents a snapshot C ′

that is accessible from snapshot C in a single step determined by M ’s transition function. It follows that each
node C will transition to at most one other node if M is deterministic, and transition to at most two other
nodes if M is non-deterministic. Note, with input length |x|, GM,x can have at most 2c·f(|x|) nodes. Whether
or not snapshots C and C ′ share an edge can be represented by an O(f(|x|))-space constructible CNF instance
ϕM,x such that ϕ(C,C ′) = true if and only if C and C ′ encode valid snapshots and C → C ′ is a transition.
Notice we also include C ∈ {0, 1}c·f(|x|) in the vertices of GM,x that do not correspond to valid snapshots, such
C will not have any incident edges.

6-1

6-2 Lecture 6: Space Complexity

Recall we let Cstart denote the initial snapshot of M ’s computation on input x (M and x will always be clear
from the context). We will assume there is only one accepting snapshot called Caccept: this can be done by
having the TM clear all of its work tapes and resetting its heads to the initial positions before entering its
accepting state.

Since M accepts an input x if and only if a path from Cstart to Caccept exists, this means we are able to build
the graph in 2c·f(|x|)-time and check for existence using a breadth-first search. Notationally, given M and x:

GM,x = ({0, 1}c·f(|x|), E)

(C,C ′) ∈ E iff ϕ(C,C ′) = true.

A breadth-first search can determine, in time that is linear in the size of GM,x, if there is a path from Cstart to
Caccept. This shows NSPACE(f(n)) ⊆ DTIME(2O(f(n))).

6.3 PSPACE Completeness

We do not know whether P = PSPACE, although it is strongly believed not to be the case, since we know
that NP ⊆ PSPACE. Thus, if it were true that P = PSPACE, it would imply that P = NP.

Definition 2 A language L′ is PSPACE-hard if for all L ∈ PSPACE, L ≤p L
′.

Definition 3 A language L′ is PSPACE-complete if L′ is PSPACE-hard and L′ ∈ PSPACE.

Definition 4 A quantified Boolean formula (QBF) is a formula of the form Q1x1Q2x2...Qnxnφ(x1, x2, ..., xn)
where Qi ∈ {∀,∃}, x1, ...xn ∈ {0, 1}, and φ is an unquantified Boolean formula. A QBF is always either true
or false.

Note that when all quantifiers appear to the far left, this is known as prenex normal form. Any formula not
in this form can be rewritten in prenex normal form using polynomial time through the use of identities (e.g.
¬∀xφ(x) = ∃x¬φ(x), and ψ ∨ ∃xϕ(x) = ∃xψ ∨ ϕ(x) where ψ does not contain x). For example, the formula
∀x(ϕ(x) ∨ ∃yϕ′(x, y)) can be rewritten as ∀x∃y(ϕ(x) ∨ ϕ′(x, y)).

We will now use configuration graphs and quantified Boolean formulae to showcase an interesting PSPACE-
complete problem. We define the language TQBF to be the set of quantified Boolean formulae that are true.

TQBF ={true Q1x1Q2x2...Qnxnφ(x1, ...xn) : Qi ∈ {∀,∃}∀i, φ is a CNF formula}.

For example, ∀x1∃x2∃x3(x1 ∨ x3) ∧ (x̄1 ∨ x2) ∧ (x3 ∨ x̄2) ∈ TQBF. To see this, for x1 = true setting x2 = true
and x3 = true suffices. For x1 = false setting x3 = true and x2 to anything suffices.

Theorem 1 (Stockmeyer and Meyer, ’73) TQBF is PSPACE-complete with respect to polynomial-time
Karp reductions.

Proof. To show TQBF is PSPACE-complete with respect to polynomial time karp reductions, we will use a
configuration graph to inductively construct a QBF of size O(f(n)2) that is true if and only if M accepts x.

Intuitively it is obvious that TQBF ∈ PSPACE, so let a language L ∈ PSPACE be decidable by a space-
constructible TM M on an input x. First, we consider the configuration graph, GM,x, of M on input x. Recall

Lecture 6: Space Complexity 6-3

there is a polynomial-time constructible CNF instance φ such that there is a directed edge C → C ′ between two
nodes C and C ′ in the configuration graph GM,x if and only if φ(C,C ′) = true. Next, we use the configuration
graph to inductively construct QBF instances ψi with two unquantified variable inputs C and C ′.

For all i ≥ 1, we construct a TQBF instance ψi(C,C
′) where C,C ′ are unquantified (free) variables that is

true if and only if there is a path in GM,x from C to C ′ with length ≤ 2i. This path will only exist if there
exists a node C ′′ that splits the path between C and C ′ into two paths. These two new paths will clearly have
length ≤ 2i−1 from C to C ′′ and length ≤ 2i−1 from C ′′ to C ′ (Figure 6.1). Notationally, we can define this as:

ψi(C,C
′) : ∃C ′′ψi−1(C,C ′′) ∧ ψi−1(C ′′, C ′)

Therefore, by setting ψ0(C,C ′) = φ(C,C ′), we can inductively build up ψ, and check if a path from Cstart to
Caccept exists by evaluating ψc·f(x)(Cstart, Cend). It’s easy to see how this can lead to exponential blow up in
space, thus, for i ≥ 1, we can consider a different approach to forming ψi(C,C

′) using additional quantified
variables, D1 and D2, as follows:

ψi(C,C
′) : ∃C ′′∀D1D2[(C = D1 ∧ C ′′ = D2) ∨ (C ′′ = D1 ∧ C ′ = D2)⇒ ψi−1(D1, D2)]

Note that ψi−1 has additional quantifiers, but we can rewrite ψi by moving all of the quantifiers in ψi−1 to
appear just after ∀D1D2 using the reduction to prenex normal form mentioned above.

Observe all variables quantified over in the construction of each ψi have size O(f(|x|)) as they are all snapshots.
So, the final form ψc·f(|x|)(Cstart, Caccept) with Cstart and Caccept now “hard-coded” in has size,

|ψ0| = O(f(|x|))
|ψi+1| ≤ |ψi|+O(f(|x|)) = O(i · f(|x|))
|ψc·f(|x|)(Cstart, Caccept)| ≤ O(f(|x|)2)

Figure 6.1: A path from C to C ′ through snapshot C ′′.

Theorem 2 (Savitch, ’70) For any space-constructible f(n) with f(n) ≥ log n,

NSPACE(f(n)) ⊆ DSPACE(f(n)2)

Corollary 1 PSPACE = NPSPACE

Proof. To prove this we will use concepts from the proof of Theorem 1 to define a recursive function that
checks whether there is a directed path between snapshots C to C ′ with length ≤ 2i.

Let L ∈ NPSPACE(f(n)) be decided by a TM M on an input x. We know that the resulting configuration
graph, GM,x, has at most V = 2c·f(|x|) nodes. We can define a boolean recursive function, R, that checks
whether there is a path from C to C ′ with length ≤ 2i. For all i ≥ 1, R(C,C ′, i) returns true if a path exists,
and otherwise returns false. As with all recursive algorithms, the amount of space used can be bounded by

6-4 Lecture 6: Space Complexity

the depth of the recursion, which is O(f(|x|)), multiplied by the amount of space required in each recursive
call, which is also O(f(|x|)) as the only memory requirements are to store the parameters in O(f(|x|)) space,
to enumerate the vertices C ′′ in O(f(|x|)) space, and, at the base case i = 0, to check if C → C ′ is an edge in
the configuration graph using O(f(|x|)) space.

So R(Cstart, Caccept) can be computed deterministically in O(f(|x|)2) space and is true if and only if there is a
sequence of transitions causing M to accept x.

6.4 NL Completeness

Definition 5 A function f : {0, 1}∗ → {0, 1}∗ is implicitly log-space computable if there is a polynomial
p(n) such that |f(x)| ≤ p(|x|) ∀x and L = {(x, i) : f(x)i = 1} ∈ L.

Definition 6 For languages L,L′, say L ≤` L
′ (i.e. L is log-space reducible to L′) if there exists an implicitly

log-space computable f such that ∀x ∈ {0, 1}∗, x ∈ L if and only if f(x) ∈ L′.

Definition 7 We say that L′ is NL-complete if it is in NL and for every L ∈ NL, L ≤` L
′.

Lemma 1 L ≤` L
′ and L′ ≤` L

′′ ⇒ L ≤` L
′′

Proof. If f and g are the reductions, then g ◦ f is the reduction from L to L′′, because whenever any TM
deciding Lb

g◦f needs a bit i from f(λ), it decides Lb
f ((x, i)) in logarithmic space. We can intuitively imagine

log-space reductions as having output tapes that can only either write a bit or move to the right, it is not
allowed to read bits or move to the left.

DIRPATH = {(G, s, t) : G is a directed path containing an s-t path}

Theorem 3 DIRPATH is NL-complete with respect to implicitly log-space reductions.

Proof. DIRPATH ∈ NL: If there is a path from s to t, we know it has ≤ n because it does not repeat a vertex
where n denotes the number of nodes in G. By starting at s, we can non-deterministically choose a step to take
and verify, in logarithmic space, if the step follow an edge of G. There are two possible outcomes, either the
machine has run for n steps and t has not been found or one of the steps is invalid, or the path ends at t (taking
at most valid n steps in the process). In the latter case, the machine accepts the input, otherwise, it rejects. At
any step, the work tape need only hold O(log n) bits of information to store the number of steps already taken,
the current node index, and the guess for the next node. Therefore, DIRPATH is in NL.

Now we must show that DIRPATH is NL-complete with respect to implicitly log-space reductions. Let L ∈ NL
be decidable by a NDTM M in O(log n) space, we need to show that there is an implicitly log-space computable
function f that reduces L to DIRPATH. We can again use a configuration graph, setting f(x) = GM,x, where
GM,x can have at most 2O(logn) nodes. Since M accepts x if and only if there is a path from Cstart to Caccept,
we only need to show that we can compute whether there is a path in GM,x from any snapshot C to snapshot C ′

in logarithmic-space. This is clearly possible, as any deterministic machine can check if a given C ′ is a transition
from C (which has out-degree at most 2) in space O(|C|+ |C ′|) = O(log |x|).

Lecture 6: Space Complexity 6-5

References

AB09 S. Arora and B. Barak, Computational Complexity: A Modern Approach, Cambridge University Press,
2009, pp. 78-89.

