
CMPUT 675: Computational Complexity Theory Winter 2019

Lecture 5 (Jan 22): Ladner’s Theorem and Oracles
Lecturer: Zachary Friggstad Scribe: Jason Cannon

In this lecture, we will wrap up our discussion of NP. However, the focus will be on its more high-level
implications. Beginning with some basic definitions, we will motivate a proof that uses a technique called
padding. We will then discuss the landscape of NP and the problems therein, showing that under the assumption
that P 6= NP, we can find problems which are not decidable in polynomial-time and are not NP-complete.
The lecture will then pivot to discuss oracle machines, where we will prove results that indicate a need for more
than relativising facts if we ever hope to tackle the infamous problem of P versus NP.

5.1 EXP and NEXP

Previously, we have encountered the complexity class EXP =
⋃
c≥1 DTIME(2n

c

). In a similar fashion, we can
define its non-deterministic variation:

Definition 1 Let NEXP =
⋃
c≥1 NTIME

(
2n

c)
, this is the exponential-time analog of NP.

Consider that NTIME is defined by NDTM Turing machines. Therefore, a language is in NEXP if there is a
verifier containing two transition functions which always run in exponential time, regardless of which transition
function was followed. The input is in the language if and only if some branch of the process will lead it to
accept. Let us now prove a result that draws a parallel between polynomial and exponential time classes.

Theorem 1 If EXP 6= NEXP, then P 6= NP.

In the following proof, we will use a technique called padding. The idea is to “pad” every string in the language
with a sequence of useless characters. In this example we will pad the string with 1’s. This expands the language
to “fit” in the complexity class which we are discussing. We will often use this technique when working with
languages in complexity classes that need to be scaled up, for example.

Proof. We will prove by contrapositive, that is, assume that P = NP and show that EXP = NEXP.
Obviously, EXP ⊆ NEXP as we can view each language in EXP as a NDTM using two identical transition
functions. We now have to show that any language in NEXP is contained within EXP. Let L ∈ NEXP be
decidable by a NDTMM in time ≤ 2n

c

. We then consider the language

Lpad =
{
〈x, 12

|x|c

〉 : x ∈ L
}

Intuitively, Lpad is the language L with exponentially many 1’s padded to it.

Claim 1 Lpad ∈ NP.

Proof. Given y, we first check if there is a string x such that y = 〈x, 12|x|
c

〉. If not, reject y. Otherwise, non-
deterministically simulate M by guessing transitions to determine if x ∈ L. Although M runs in exponential
time, it is only on a section of the input that looks logarithmic with respect to the size. Hence, the running
time is O(2|x|

c

), which is polynomial in y because the input string is exponential in length compared to x.

5-1

5-2 Lecture 5: Ladner’s Theorem and Oracles

Therefore, it follows that Lpad ∈ P (recall that we assumed P = NP) and as such is decidable in poly(|y|) time

by some deterministic machine M̂ . Hence, because Lpad ∈ P it follows that L ∈ EXP: to determine if a given

input x is in L, we will pad the input as such, where y = 〈x, 1poly(|y|)〉 and simulate M̂(y). The running time of

M̂(y) is polynomial in |y| where |y| is exponential in the input size |x|. Thus, the running time is exponential
in |x|.

5.2 NP-Intermediate Problems

Now let us suppose that P 6= NP. We would then have a separation into two disjoint sets: the problems that
are in P and the problems that are NP-complete. The question is, are there any problems that are in NP that
do not exist in either of these sets? Under our assumption, we will show that there exists a “gray area” of sorts,
where there are problems that are not in P, nor are they NP-complete. We will call these NP-intermediate
problems.

For example, some real problems exist that could live in this gray area. Consider the problem of graph iso-
morphism. We know this problem to clearly live in NP as we can provide a bijection between two graphs.
However, we have been unable to find a polynomial-time algorithm or a polynomial-time reduction from an
existing NP-hard problem. Recently, the notion that this is an intermediate problem has been challenged as
there is now a quasi-polynomial time algorithm for deciding if two graphs are isomorphic: an algorithm with
running time O(nlog

c n) for some constant c [B16].

Another example that could be an NP-intermediate problem is integer factorization. That is, does there exist
a prime factor within some given range?

P NP-c

NP

The complexity landscape if P 6= NP.

Theorem 2 (Ladner’s Theorem 1975) Suppose that P 6= NP, then there exists a language L ∈ NP − P
that is not NP-complete.

Proof. For any function H : N → N, we define the language SATH =
{
〈φ, 1|φ|H(φ)〉 : φ ∈ SAT

}
. That is,

SATH is SAT with some additional padding. We will now define the function H : N → N as follows: H(n) =

minimum number i < log2 log2 n such that Mi decides if x ∈ SATH or not, in at most 1 + i · |x|i steps for each
|x| < log2 n. If there is no such number i then H(n) = log2 log2 n. This is a recursive definition, it relies only
upon checking smaller strings of length at most log2 n.1,2

1Although this function may not be defined for small i ∈ N, we could use a variation with the same asymptotic growth rate such
as dlog2(dlog2(n + 2)e)e. Furthermore, H(n) is not well-defined for x of length 0, as we would need to transition at least one step;
so we could add 1 to H(n) if needed.

2Consider Mi to be the Turing machine represented by the binary expansion of i. We assume that every Turing machine appears
infinitely often due to padding of useless characters that do not change the functionality of machine.

Lecture 5: Ladner’s Theorem and Oracles 5-3

• SATH ∈ NP. Since H(n) is polynomial time computable (proven as a question in the homework), we

can efficiently check that a given input is of the form 〈φ, 1|φ|H(|φ|)〉. We can then check that φ ∈ SAT as
we will non-deterministically attempt to guess a satisfying assignment.

Before showing the next two steps that prove SATH /∈ P and is not NP-complete, we have to establish some
properties.

Claim 2 SATH ∈ P =⇒ H(n) ∈ O(1)

That is, if our language is indeed in P then H(n) is bounded by some constant that it never exceeds.

Proof. As SATH ∈ P there exists some Turing machine M that decides SATH in ≤ c · nc steps. Recall that
we have assumed that every Turing machine is enumerated infinitely often, so we can pick some i > c such that
Mi = M . Hence, we have that for n > 22

i

, H(n) ≤ i. Therefore, H(n) ∈ O(1).

The second property we will prove is almost a strong negation of the previous one. That is,

Claim 3 SATH /∈ P =⇒ ∀i,H(n) = i for only finitely many n.

Proof. Suppose not. That is, there exists some i such that H(n) = i for infinitely many n. We claim that Mi

decides SATH in i · |x|i time. To see this, consider any x ∈ {0, 1}∗ and pick n > 2|x| such that H(n) = i. By

definition of H(n), this means Mi should correctly decide if x ∈ SATH in i · |x|i time. Thus, SATH ∈ P.

We will now show the two required steps: that SATH (1) is not in P and (2) is not NP-complete using these
two properties.

• SATH /∈ P. Suppose not. That is, SATH ∈ P and by our first property we have H(n) ∈ O(1). Consider
that SATH is bounded by some constant, which implies that SATH is SAT with polynomial padding of
1’s. Hence, a polynomial-time algorithm to decide SATH can then be used to solve SAT in polynomial
time. Note that this argument is reminiscent to the padding argument we saw before. In this case we
could simply pad SAT with polynomial 1’s and run a polynomial-time algorithm that solves SATH . This
implies that SAT ∈ P, contradicting our assumption P 6= NP.

• SATH is not NP-complete. Suppose not. That is, SATH is NP-complete which implies there exists

a polynomial-time reduction f reducing SAT to SATH , f : φ → 〈ψ, 1|ψ|H(ψ)〉. The idea is that we can
apply f and remove the useless padding from the instance of SATH . Additionally, we have just shown
that SATH /∈ P. By our second property, we know that ∀i,H(n) = i for only finitely many i. Hence, it
follows that |ψ| < |φ| for large enough |φ|. This implies that we could take an instance of SAT and use a
polynomial-time reduction to reduce to a smaller instance of SAT. As such, we could recursively apply
this reduction until we have achieved some desired constant size and solve any instance in constant time.
Thus, SAT ∈ P which contradicts our assumption P 6= NP and the fact that SAT is NP-complete.

Therefore, it follows that SATH ∈ NP − P and is not NP-complete. Under the assumption that P 6= NP,
we have constructed our first NP-intermediate problem. Ultimately, we have separated P and NP-complete
problems by creating a class of problems that exist in the “gray area” between them.

Observe a key argument in this proof: if there is a polynomial-time reduction from SAT to itself that maps
instances of size n to instances of size o(n), then P = NP.

5-4 Lecture 5: Ladner’s Theorem and Oracles

5.3 Oracle Machines

An oracle Turing machine is a Turing machine M with access to a special read-write tape called an oracle tape.
Additionally, we also associate to the machine a language O ⊆ {0, 1}∗. The Turing machine M is similar to
a deterministic Turing machine, but with 3 additional states qquery, qyes, and qno. If at any point during the
execution of a program, M enters the state qquery, then the machine transitions to the state qyes if the contents
of the oracle tape belong to the language O. Otherwise, the machine transitions to the state qno. Furthermore,
it is important to note that regardless of the language O, the query counts only as a single computational step.
We can define non-deterministic oracle Turing machines in a similar manner.

We will now define some new complexity classes relating to oracles:

Definition 2 Analogous to P and NP, we have that for every O ⊆ {0, 1}∗, PO is the set containing all
languages decidable by a polynomial-time deterministic oracle Turing Machine with oracle access to O. It follows
that NPO is the set containing every language that can be decided by a polynomial-time nondeterministic Turing
machine with oracle access to O.

5.3.1 Relativising Proofs

Intriguingly, almost all of the proofs we have covered so far still hold when applied to polynomial oracle Turing
machines! For example, the diagonalization proofs used to prove results about space and time complexity still
work verbatim, as does the padding argument covered in the beginning of the notes. We can also still simulate
oracle machines as long as we are working with one fixed oracle language. As such, we call proofs that can hold
in the presence of oracles relativising proofs. Similarly, if the proof does not hold in the presence of oracles, we
say that it is a nonrelativising proof. For example, one of the only nonrelativising proofs that we have covered
thus far is the Cook-Levin theorem. This is because given an oracle machine, the concept of “encoding” (using
clauses and variables to capture the computation) is not well-defined.

5.3.2 Limitations of Techniques

In this section, we will demonstrate to some extent the limits of the techniques we have learned. We will show
that the basic concepts of padding, diagonalization, and so on by themselves are not enough to separate P
versus NP, unless they take advantage of some nonrelativising fact. In order to separate P and NP, we need
more tools than we have had access to so far. Cook-Levin’s theorem could potentially provide some insight,
as we could use it to focus on a single problem such as SAT and show that SAT /∈ P. However, we simply
cannot consider these two complexity classes at a high level and hope to give rise to any kind of contradiction.
A consequence of this theorem is that we cannot simply solve P versus NP using a relativising proof.

Theorem 3 (Baker, Gill, Solovay 1975) There exist oracles A,B ⊆ {0, 1}∗ such that PA = NPA and
PB 6= NPB.

First, we will let A be the language EXPCOM = {〈α, x, 1t〉 | the DTM Mα accepts x in at most 2t steps}.
This in an exponential-time complete language. It is essentially the analog of TMSAT, seen previously, except
for its deterministic exponential time. EXPCOM is the language of all triples 〈α, x, 1t〉, where α is encodes a
DTM, x is some proposed input to that machine, and t is a sequence of 1’s encoding some unary value t. We
will now prove the following claim:

Claim 4 PA = NPA = EXP for some oracle A.

Lecture 5: Ladner’s Theorem and Oracles 5-5

That is, PA and NPA are the same. In fact, the class of languages that can be decided by Turing machines
of either category is exactly those that can be deterministically decided without oracles by an exponential time
algorithm.

Proof. Clearly, PA ⊆ NPA is obvious, for the same reason that P is contained in NP. Every deterministic
oracle verifier machine looks like a non-deterministic oracle machine with two identical transition functions.

Claim 5 NPA ⊆ EXP

Let L ∈ NPA be decided by NDTMM with oracle access to A and running time O(nc). As L is still in
NP, it must still make a polynomial-time number of transitions. We want to show that any language that
can be decided by a polynomial-time non-deterministic verifier with oracle access to A (an exponential-time
complete language) can be decided in deterministic exponential-time. Note, when M queries A, it is done in
O(nc) time. Recall from the definition of A that t is polynomial-time bounded. Thus, each oracle query can
be deterministically simulated in 2O(nc) time and the number of non-deterministic branches is also at most
≤ 2O(nc). Hence, we simply enumerate all branches and simulate the oracle in 2O(nc) time. Consider the
following carefully: we are multiplying these two running times. For each of the exponentially-many branches,
we are doing exponential-time computation. When multiplying them, we will just “hide” things in the O.
Therefore, L ∈ EXP.

Claim 6 EXP ⊆ PA

Finally, we will show that EXP languages are contained in PA. Fortunately, the proof is simpler. Consider that
we know A to be exponential-time complete. So, any given input x decided by some Turing machine Mα can
be decided by a polynomial-time oracle machine. Given x, add α to it as polynomial size padding to construct
an instance that can be solved by the oracle machine.

Let L ∈ EXP be decidable by Mα in time 2n
c

. To decide if x ∈ L with a polynomial-time oracle machine, we
must:

• write 〈α, x, 1nc〉 (which takes poly |x| time)

• query A, output answer.

As we have PA ⊆ NPA ⊆ EXP ⊆ PA it follows that PA = NPA = EXP, as required.

5.3.3 Construction of B

Let us now demonstrate an interesting language. Using this language and an oracle, we will show that in fact
we can separate NP from nearly exponential-time, not just P from NP. Let us construct an oracle B that will
separate these two iteratively. First, for an arbitrary language B ⊆ {0, 1}∗ let us consider the unary encoding
UB = {1n : ∃x ∈ B with |x| = n} (which is more like a unary indicator). So this language contains strings of
only 1’s with relation to the length of x in the original language B. Hence, for any B, it follows that UB ∈ NPB .
The verifier can check that the input consists of only 1’s and if so, attempts to non-deterministically guess the
form of x and query the oracle. This holds even if we use a really weird language that is undecidable.

Claim 7 PB 6= NPB for some oracle B.

Proof. To prove this claim, we will carefully and iteratively construct a language B over a series of steps.
Our construction will ensure that a newly defined unary language UB is not in PB . We will build B in stages,
referring to each as Stage i, where Stage 0 is the initial stage.

5-6 Lecture 5: Ladner’s Theorem and Oracles

In essence, we will simulate an oracle Turing machine that will query the language we are partially building. If
it queries something we have already answered, then we will consistently give the same answer. Otherwise, we
will define an answer. Here is the formal construction:

(a) Constructing B in stages. Initially, we construct the following two sets:

B0
Y , B

0
N := ∅

(with the invariant being that after each step the Bi’s constructed are finite)

(b) Building B0
Y , B

0
N , inductively. Use the following algorithm:

• Let ni = 1 + max{|x| :
(
x ∈ B<iY ∪B

<i
N

)
}

• Run Mi on 1ni for ≤ 2
ni
10 steps

– If Mi queries with some x ∈ B≤iY ∪B
≤i
N (union of all previous sets up to i itself), answer the query

consistently.

– If Mi queries with x /∈ B≤iY ∪B
≤i
N , answer “No” and add x to BiN .

• If Mi halts and accepts 1ni in ≤ 2
ni
10 steps, add all {0, 1}n to BiN .

• Otherwise, pick some x /∈ {0, 1}ni − (BiY ∪ BiN) and add x to BiY (such x exists as we halted in less
than 2ni , so there is some string that we did not query).

Let B =
⋃
j≥0B

j
Y and recall the definition of the unary language UB = {1n : ∃x ∈ B, |x| = n}. Our goal is to

show that UB 6∈ PB .

That is, show that no polynomial-time oracle machine with access to this language B could have decided UB .
Also note that the proof is going to use a sort of “diagonal-type” argument once again. Therefore, our claim is:

Claim 8 UB ∈ NPB −PB

Proof. We will prove the above claim as follows: We have already seen previously that for any language B
it holds that UB ∈ NPB . Again, given an input it will verify if it consists only of 1’s. If so, it will non-
deterministically guess x and ask the oracle if x is in the language. As such, we must prove:

Claim 9 UB /∈ PB

Suppose not. That is, UB ∈ PB . Let M be a polynomial-time Turing machine with oracle B that decides
UB in p(n) time, where p(n) is a polynomial. We have assumed we can enumerate our Turing machines such
that each machine appears infinitely often. Consider that the ni’s are increasing throughout the enumeration
(because they are always larger than previously queried, and at each step, something was added). Let’s pick

some i such that 2
ni
10 > p(ni). We know such i exists because the ni’s are increasing exponentially and will

eventually surpass the polynomial. Consider that as Mi decides the language, regardless of the input, Mi will
halt before 2ni steps because it runs in time p(n). The question is whether it accepts or not. We have:

• Mi(1
ni) accepts if and only if ∃x ∈ {0, 1}ni ∩B, by definition of UB .

• Mi(1
ni) accepts it and only if ∀x ∈ {0, 1}ni , x /∈ B, by construction of Bin.

Intuitively, by definition of the language Mi accepts if some element of the required length exists in the set.
However, if it accepts, by construction the set would have been empty.

Hence, this is a contraction and it follows that UB /∈ PB .

Therefore, we have shown that there exist oracles A,B such that PA = NPA and PB 6= NPB .

Lecture 5: Ladner’s Theorem and Oracles 5-7

References

AB09 S. Arora and B. Barak, Computational Complexity: A Modern Approach, Cambridge University Press,
New York, NY, USA, 2009.

B16 L. Babai, Graph Isomorphism in Quasipolynomial Time, in proceedings of ACM SIGACT Symposium
on Theory of Computing, 684–697, 2016.

