
CMPUT 675: Computational Complexity Theory Winter 2019

Lecture 4 (Jan 17): NP Completeness
Lecturer: Zachary Friggstad Scribe: Haozhou Pang

The proofs of all of the results in this section can also be found in [AB09]. Recall the definition of TMSAT:

Definition 1 TMSAT = {(α, x, 1n, 1t) : ∃u ∈ 0, 1ns.t. Mα(x, u) accepts within t steps.} where Mα denotes
the TM represented by α, 1n is the bound on proof length and 1t is the bound on number of steps

In the previous lecture, we proved that TMSAT is NP-complete. However, TMSAT is not a very helpful and
interesting NP-complete problem since its definition is closely tied to the notion of Turing Machine. In this
lecture, we will discuss more examples of natural NP-complete problems.

4.1 SAT

Given a finite set of variables X = x1, x2, ..., xn, and a finite set of clauses ρ, let φ be a boolean formula in
CNF form over variables X. Such a boolean formula φ is satisfiable if there exists some truth assignment that
makes all clauses true. Hence, SAT is all instances φ = (X, ρ), ∃ τ : X → {T, F} satisfying all clauses in ρ.

Theorem 1 (Cook / Levin Theorem) SAT is NP-complete

Lemma 1 SAT ∈ NP

Proof. This is obvious: given a proposed solution, we can easily verify that the assignment satisfies all clauses
in polynomial time. Hence, SAT ∈ NP.

Lemma 2 SAT is NP-hard

Proof. Let L ∈ NP. By definition, we know that there is a polynomial time verifier M such that for every
x ∈ {0, 1}∗, x ∈ L ⇔ Mα(x, u) = accept for some u ∈ {0, 1}p(|x|). We will show L is polynomial-time Karp
reducible to SAT, i.e. we will show for each input, I, we specify a boolean formula which is satisfiable if and
only if the machine Mα accepts I.

For each tape i of Mα, each cell c ∈ [−t, t] of tape i, each symbol g, and each time step τ ∈ [0, t], we define the
following variables:

Xi,c,g,τ : True if cell c of tape i contains symbol g at time τ

Yi,h,τ : True if the head of tape i is at position h at time τ

Zq,τ : True if the state of Mα is q at time τ

Thus, we can define a boolean formula to be the conjunction of the following expressions:

For each time step τ , define the following (except those for which τ + 1 would exceed t).

4-1

4-2 Lecture 4: NP Completeness

• ∀q 6= q′, Zq,τ ∪ Zq′,τ and ∀q, Zq,τ (exactly one state at a time)

• ∀ tapes i, ∀h 6= h′, Yi,h,τ ∪ Yi,h′,τ and ∨hYi,h,τ (exactly one one head position for each tape at a time.)

• ∀ tapes i, ∀c 6= c′, Xi,c,g,τ ∪Xi,c′,g,τ and ∨gXi,c,g,τ (exactly one one symbol/cell at each time)

• Zqstart,0 (initial state of Mα)

• ∀ tapes i, the clause Yi,0,0 (initial positions of heads of all tapes)

• ∀ cells c of all tapes except the two input tapes, the clause Xi,c,�,0 (initial contents of tapes except input
tapes are all blank symbols)

• ∀ cells 0 ≤ c < |x| − 1 of the first input tape (say tape 0), X0,c,xc,0 (the first input tape is initialized to x)

• ∀ symbols g1, ..., gk, ∀ head positions h1, ..., hk, ∀ states q, let g′1, ..., g
′
k denote the contents of cells at old

position, h′1, ..., h
′
k denote the new head positions, and q′ denote the new state. Then

(
∧k
i=1Xi,hi,gi,τ) ∧ (

∧k
i=1 Yi,hi,τ) ∧ (Zq,τ) ⇒ (

∧k
i=1Xi,hi,g′i,τ

) ∧ (
∧k
i=1 Yi,h′

i,τ
) ∧ (Zq′,τ)

(All possible transitions at step τ when head of tape i is at position hi and current state is q.)

• ∀g 6= g′, Xi,c,g,τ ∧ Xi,c,g′,τ+1 ⇒ Yi,c,τ (If a cell is not where the head is at a given time, it does not change)

• Zqaccept,t (Must accept within t steps)

The implications can be turned into CNF instances. Generally, one can convert any boolean expression to a
CNF with, perhaps, exponential size in the original expression. But the implications involve only a constant
(independent of x) number of variables so this still results in a polynomial-time reduction. For a more streamlined
approach, use facts like a ∧ b⇒ c ∧ d is equivalent to (a ∨ b ∨ c) ∧ (a ∨ b ∨ d).

If the boolean formula defined above (the conjunction of all the sub-expressions) is satisfiable, then there is a
accepting computation of Mα on input I that follows the steps indicated by each sub-expression. Conversely, if
there is a accepting computation of Mα on input I, Then the boolean formula must be satisfiable since all the
sub-expressions are extracted from the definition of Mα. This can be proven carefully by induction on τ .

In some sense, in the CNF instance above once the proof string values y are determined (i.e. once we have set
X1,c,g,0 for each cell c of the the proof string, say 1) then all other variables are determined by the implications:
i.e. are determined by “simulating” the verifier on input (x, y).

Proof of Theorem 1. Follows from Lemma 1 and Lemma 2.

The proof of Theorem 1 shows that any NP problem can be reduced to SAT problem in polynomial time.
That means if there exists a deterministic Turing Machine which can solve SAT in polynomial time, then all
problems in NP can be solved in polynomial time, which implies P=NP.

4.2 Reducing SAT to 3SAT

The 3SAT problem is similar to SAT problem but each clause in the boolean formula has exactly 3 literals over
three distinct variables. We show that 3SAT is NP-complete by showing SAT is polynomial time reducible
to 3SAT. Namely, we will propose a transformation that maps each CNF formula ϕ into a 3CNF formula ψ
such that ψ is satisfiable if and only if ϕ is satisfiable.

Lemma 3 SAT ≤p 3SAT

Lecture 4: NP Completeness 4-3

Proof. For any clause Ci in a SAT formula C1 ∧ C2 ∧ ... ∧ Cn, there can be only four cases:

• Case 1: It contains three literals. Then there is no reduction needed for this case.

• Case 2: It contains only one literal, say Ci = li. We introduce two new variables a1 and a2, then we can
replace Ci by the conjunction of following clauses (li∨a1∨a2)∧ (li∨a1∨a2)∧ (li∨a1∨a2)∧ (li∨a1∨a2),
which is logically equivalent to Ci. Hence, Ci can be reduced to the conjunction of clauses and each of
them contains exactly 3 literals.

• Case 3: It contains two literals, say Ci = (li1 ∨ li2). Similarly, we introduce a new variable b, then we can
replace Ci by (li1 ∨ li2 ∨ b) ∧ (li1 ∨ li2 ∨ b).

• Case 4: It contains k literals, where k ≥ 4. When k = 4, say Ci = (li1 ∨ li2 ∨ li3 ∨ li4), we introduce a new
variable z and replace Ci with the pair of clauses Ci1 = li1 ∨ li2 ∨ z and Ci2 = li1 ∨ li2 ∨ z. Obviously, if Ci
is true, then there is an assignment to z that satisfies both Ci1 and Ci2 ; and if Ci is false, then no matter
what value we assign to z, either Ci1 or Ci2 will be false. By using induction, we can easily show that any
clause C of size k ≥ 4 can be changed into an equivalent set of clauses of size exactly 3.

The analysis above yields a polynomial-time transformation of a CNF formula into an equivalent 3CNF formula,
as required. Hence, 3SAT is in NP-complete.

4.3 Reducing 3SAT to Independent Set

Consider the problem of Independent Set (IS). Given a graph G(V,E) and an integer m, is there some I ⊆ V
s.t. no two vertices u, v ∈ I form an edge and |I| = m.

Figure 4.1: An example of an independent set of size 2

Lemma 4 Independent Set is NP-complete.

Proof. We prove Independent Set is NP-complete by showing 3SAT ≤p Independent Set. Let φ be a
SAT instance with m clauses. We say two literals conflict if they are over the same variable but with different
signs (eg. x1 and x1 conflict). For any clause Ci, 1 ≤ i ≤ m, say Ci has literals li1, l

i
2, l

i
3. We construct a graph

G = (V,E) as follows:

• V = {(i, 1), (i, 2), (i, 3), ∀i : 1 ≤ i ≤ m}

• E = {{(i, 1), (i, 2)}, {(i, 1), (i, 3)}, {(i, 2), (i, 3)} : ∀1 ≤ i ≤ m}

• U = {{(i, a), (j, b)} : lia and ljb conflict}.

4-4 Lecture 4: NP Completeness

Thus, G contains m triangles, one for each clause in φ, with each node representing one of the literals in the
clause. Also, we connect two nodes in different triangles if they represent literals where one is the negation of
the other. For example, the boolean formula (x ∨ y ∨ z) ∧ (w ∨ y ∨ z) ∧ (w ∨ x ∨ y) can be converted to the
following graph:

Figure 4.2: the graph constructed from the above boolean formula

Claim 1 φ is satisfiable if and only if there exists an ind. set of size m in the graph.

The claim is easy to prove. First, if φ is satisfiable, then we pick one node (i, e) from each triangle 1 ≤ i ≤ m
s.t. lie is true under the satisfying assignment. The nodes corresponding to these literals form an independent
set of size m since the only edges among them would connect nodes that are negations of each other, hence it
will never be the case that both of them have been selected.

Conversely, suppose I is an independent set of size m, then |I ∩ {(i, 1), (i, 2), (i, 3)}| = 1, ∀1 ≤ i ≤ m. For
each node (i, e) ∈ I, set the variable in lie to satisfy the literal. Note this will not attempt to set different truth
values to the same variable because I is an independent set. Clearly even this partial assignment satisfies φ, so
extending it to a full assignment by arbitrarily setting the remaining variables will satisfy φ. Therefore, we can
reduce a 3CNF formula to an independent set instance in polynomial time, so independent set problem
is in NP-complete.

4.4 Co-NP

Definition 2 Co-NP = {L : L ∈ NP}

Note that Co-NP is not the complement of NP. Actually, Co-NP and NP have a non-empty intersection
since every language in P is in Co-NP ∩ NP. The following graph will give a better visualization of the
relationships of the complexity classes that have been discussed so far:

Figure 4.3: The relationship of different complexity classes

Lecture 4: NP Completeness 4-5

An alternative definition of Co-NP:

Definition 3 L is in Co-NP if there exists a p.t.v. M s.t.

• ∀x ∈ L,∀u ∈ {0, 1}∗ : M(x,u) = accept

• ∀x /∈ L,∃u ∈ {0, 1}∗ : M(x,u) = reject

As with NP-completeness, a language L is co-NP-complete if L ∈ co-NP and L′ ≤p L for every L′ ∈ co-NP.

Claim 2 Tautology is Co-NP-complete

Proof. A boolean formula φ is a tautology if it is satisfied by every assignment. Clearly, Tautology is in
Co-NP by definition 3, so we need to show for every L ∈ Co-NP, L ≤p Tautology. Let L ∈ Co-NP, then
L ∈ NP, there exists a polynomial time transformation f() that can reduce L to SAT (from section 4.1). That
is: ∀x ∈ {0, 1}x, x ∈ L⇔ f(x) is not satisfiable, so we simply output f(x).

References

AB09 S. Arora and B. Barak, Computational Complexity: A Modern Approach Cambridge University Press,
2009

