CMPUT 675: Computational Complexity Theory

Lecture 3 (Jan 15): The Class **NP**

Lecturer: Zachary Friggstad

Scribe: Joshua Teitz

Winter 2019

3.1 NP

Definition 1 A turing machine M is a polynomial-time verifier (PTV) if it reads two inputs (x, y) and for all input pairs $(x, y) \in \{0, 1\}^*$, M halts after p(|x|) steps for some polynomial p(n).

Note that the running time of a verifier only depends on the first input x.

Definition 2 A language L is decidable by a PTV M with running time p(n) if for all $x \in \{0, 1\}^*$,

1. if $x \in L$, there exists $y \in \{0,1\}^{p(|x|)}$ such that M accepts (x,y) and

2. if $x \notin L$, for every $y \in \{0,1\}^*$, M rejects x, y.

Definition 3 The class **NP** is all languages decided by a PTV.

3.1.1 Relations between P, NP and PSPACE

Theorem 1 $P \subseteq NP \subseteq PSPACE$

Proof.

$\mathbf{P} \subseteq \mathbf{NP}.$

Fix $L \in \mathbf{P}$. Let M be a poly-time TM that decides L. Define M' as the PTV that simulates M(x) for every input pair $x, y \in \{0, 1\}^*$. Fix $x \in \{0, 1\}^*$. Observe that if $x \in L$, then M' accepts (x, y) for any y, and if $x \notin L$, then M rejects (x, y) for every $y \in \{0, 1\}^*$. So M' is a PTV that decides L and thus $\mathbf{P} \subseteq$ **NP**.

$NP \subseteq PSPACE.$

Fix $L \in \mathbf{NP}$ and a PTV M with running time p(n) that decides L Define a TM M'(x) that iteratively simulates M. In each iteration, M' picks the "next" bit string y from an enumeration of $\{0, 1\}^{p(|x|)}$ and simulates M(x, y). If M accepts (x, y), then M' accepts x. Otherwise, M' proceeds to the next iteration.

As observed in lecture 2, the calculation M(x, y) runs in time p(|x|) so it uses polynomial space for each y. The different y can also be enumerated using O(p(|x|)) space with a simple counter. Thus, M' uses O(p(|x|)) space overall. Thus $L \in \mathbf{PSPACE}$ and so $\mathbf{NP} \subseteq \mathbf{PSPACE}$.

3.1.2 Non-deterministic Turing Machines

Definition 4 A non-deterministic Turing machine (NDTM) M is defined the same way as a regular Turing machine except that it has two transition functions δ_0 and δ_1 . At each step of the computation, M arbitrarily chooses between δ_0 and δ_1 .

Definition 5 A language L is decided by a NDTM M if for all $x \in \{0,1\}^*$, M eventually halts for every sequence of transition functions¹, and

- 1. if $x \in L$, there exists some sequence of transitions that ends in q_{accept} and
- 2. if $x \notin L$, every sequence of transitions ends in q_{reject} .

Definition 6 A NDTM M has running time p(n) if for every $x \in \{0,1\}^*$, all sequences of transitions stop within p(|x|) steps.

Definition 7 NTIME(f(n)) is all languages decidable by a NDTM with running time O(f(n)).

Theorem 2 NP = $\bigcup_{c \ge 1} \operatorname{NTIME}(n^c)$

Proof.

 $\bigcup_{c>1} \mathbf{NTIME}(n^c) \subseteq \mathbf{NP}.$

Fix $L \in \bigcup_{c \ge 1} \mathbf{NTIME}(n^c)$ and a NDTM M that decides L in time p(n) for some polynomial p. For all $x \in \{0,1\}^*$ and $y \in \{0,1\}^{p(n)}$, define M' as the PTV that simulates M(x) with transition sequence defined by y. That is, in the *i*'th step the simulation of M(x) should use transition function δ_{y_i} . M' accepts x iff M accepts x on the sequence defined by y. So $L \in \mathbf{NP}$ and thus $\bigcup_{c>1} \mathbf{NTIME}(n^c) \subseteq \mathbf{NP}$.

 $\mathbf{NP} \subseteq \bigcup_{c>1} \mathbf{NTIME}(n^c).$

Fix $L \in \mathbf{NP}$ and let M be a PTV that decides L. Fix $x \in \{0,1\}^*$. Define a NDTM M' that uses its nondeterminism to create a bit string y of length p(|x|). More specifically, M' generates y by writing p(|x|)bits where each bit will be a 0 if δ_0 is used when generating the bit or a 1 if δ_1 is used when generating the bit. Then M' then simulates M on input (x, y). M' accepts x iff M' can generate $y \in \{0, 1\}^{p(|x|)}$ such that M accepts (x, y). Since M is a PTV and it takes p(|x|) transitions to generate $y \in \{0, 1\}^{p(|x|)}$, $L \in \bigcup_{c>1} \mathbf{NTIME}(n^c)$. So $\mathbf{NP} \subseteq \bigcup_{c>1} \mathbf{NTIME}(n^c)$.

3.2 Reducibility and NP-completeness

Definition 8 $L \subseteq \{0,1\}^*$ is poly-time Karp reducible to $L' \subseteq \{0,1\}^*$ if there exists a poly-time computable function $f : \{0,1\}^* \to \{0,1\}^*$ such that $x \in L$ iff $f(x) \in L'$. We write $L \leq_p L'$ to mean that L is poly-time reducible to L'.

¹Meaning there is no infinite sequence of transitions that does not enter a halting state when starting from the initial snapshot for x.

Definition 9 L' is NP-hard if for all $L \in NP$, $L \leq_p L'$.

Definition 10 L' is **NP**-complete if L' is **NP**-hard and $L' \in \mathbf{NP}$

Theorem 3 For any languages L, L', L'',

- 1. $L \leq_p L'$ and $L' \leq_p L'' \Rightarrow L \leq_p L''$
- 2. If L is **NP**-hard and $L \in \mathbf{P}$, then $\mathbf{P} = \mathbf{NP}$.
- 3. If L is NP-complete, then $L \in \mathbf{P}$ iff $\mathbf{P} = \mathbf{NP}$.

Proof.

- 1. Fix $x \in \{0,1\}^*$. Since $L \leq_p L'$ and $L' \leq_p L''$, there exists poly-time computable f and g such that $x \in L$ iff $f(x) \in L'$ and $f(x) \in L'$ iff $g(f(x)) \in L''$. So $x \in L$ iff $(g \circ f)(x) \in L''$. And since the composition of poly-time computable functions remains poly-time computable, $L \leq_p L''$.
- 2. Suppose L is **NP**-hard and $L \in \mathbf{P}$. Let M be a poly-time TM deciding L. By Theorem 1, $\mathbf{P} \subseteq \mathbf{NP}$. Let $L' \in \mathbf{NP}$. Since L is **NP**-hard, $L' \leq_p L$. Say f is the reduction showing $L' \leq_p L$. To decide if some string $x \in L$, a TM could first compute f(x) and then output the result of the computation M(f(x)). In this way, L' is be decided in polynomial time. Thus, $\mathbf{NP} \subseteq \mathbf{P}$.
- 3. Suppose L is **NP**-complete.

Suppose $L \in \mathbf{P}$. The previous part then shows $\mathbf{P} = \mathbf{NP}$. Now suppose $\mathbf{P} = \mathbf{NP}$. Since L is **NP**-complete, $L \in \mathbf{NP}$. And since $\mathbf{P} = \mathbf{NP}$, $L \in \mathbf{P}$.

3.2.1 Example of an NP-complete language

Definition 11 TMSAT = { $(\alpha, x, 1^n, 1^t)$: there exists $u \in \{0, 1\}^n$ such that $M_\alpha(x, u)$ accepts within t steps}

Note this definition assumes we can enumerate all verifiers using strings $\alpha \in \{0, 1\}^*$ much like we can enumerate all TMs. This is easily doable, just like it is with TMs.

Theorem 4 TMSAT is NP-complete.

Proof. TMSAT \in **NP**: a verifier M for TMSAT expects, when given input $(\alpha, x, 1^n, 1^t)$, a string $u \in \{0, 1\}^n$ as its second input. Then M simulates M_α on input (x, u) for t steps and accepts if and only if this simulation accepted.

To prove TMSAT is **NP**-hard, fix $L \in \mathbf{NP}$ and $x \in \{0,1\}^*$. So there exists a PTV M_α with running time p(n) such that $x \in L$ iff there exists $y \in \{0,1\}^{p(|x|)}$ such that M_α accepts (x,y). Note, x can be mapped in polynomial time to $(\alpha, x, 1^{p(|x|)}, 1^{p(|x|)})$. In this way, $(\alpha, x, 1^{p(|x|)}, 1^{p(|x|)}) \in \text{TMSAT}$ iff there exists $u \in \{0,1\}^{p(|x|)}$ such that $M_\alpha(x, u)$ accepts within p(|x|) steps. This occurs iff $x \in L$. So $L \leq_p$ TMSAT and thus TMSAT is **NP**-hard. Therefore, TMSAT is **NP**-complete.