
CMPUT 675: Computational Complexity Theory Winter 2019

Lecture 3 (Jan 15): The Class NP
Lecturer: Zachary Friggstad Scribe: Joshua Teitz

3.1 NP

Definition 1 A turing machine M is a polynomial-time verifier (PTV) if it reads two inputs (x, y) and for all
input pairs (x, y) ∈ {0, 1}∗, M halts after p(|x|) steps for some polynomial p(n).

Note that the running time of a verifier only depends on the first input x.

Definition 2 A language L is decidable by a PTV M with running time p(n) if for all x ∈ {0, 1}∗,

1. if x ∈ L, there exists y ∈ {0, 1}p(|x|) such that M accepts (x, y) and

2. if x /∈ L, for every y ∈ {0, 1}∗, M rejects x, y.

Definition 3 The class NP is all languages decided by a PTV.

3.1.1 Relations between P, NP and PSPACE

Theorem 1 P ⊆ NP ⊆ PSPACE

Proof.

P ⊆ NP.

Fix L ∈ P. Let M be a poly-time TM that decides L. Define M ′ as the PTV that simulates M(x) for
every input pair x, y ∈ {0, 1}∗. Fix x ∈ {0, 1}∗. Observe that if x ∈ L, then M ′ accepts (x, y) for any y,
and if x /∈ L, then M rejects (x, y) for every y ∈ {0, 1}∗. So M ′ is a PTV that decides L and thus P ⊆
NP.

NP ⊆ PSPACE.

Fix L ∈ NP and a PTV M with running time p(n) that decides L Define a TM M ′(x) that iteratively
simulates M . In each iteration, M ′ picks the “next” bit string y from an emumeration of {0, 1}p(|x|) and
simulates M(x, y). If M accepts (x, y), then M ′ accepts x. Otherwise, M ′ proceeds to the next iteration.

As observed in lecture 2, the calculation M(x, y) runs in time p(|x|) so it uses polynomial space for each
y. The different y can also be enumerated using O(p(|x|)) space with a simple counter. Thus, M ′ uses
O(p(|x|)) space overall. Thus L ∈ PSPACE and so NP ⊆ PSPACE.

3-1

3-2 Lecture 3: The Class NP

3.1.2 Non-deterministic Turing Machines

Definition 4 A non-deterministic Turing machine (NDTM) M is defined the same way as a regular Turing
machine except that it has two transition functions δ0 and δ1. At each step of the computation, M arbitrarily
chooses between δ0 and δ1.

Definition 5 A language L is decided by a NDTM M if for all x ∈ {0, 1}∗, M eventually halts for every
sequence of transition functions1, and

1. if x ∈ L, there exists some sequence of transitions that ends in qaccept and

2. if x /∈ L, every sequence of transitions ends in qreject.

Definition 6 A NDTM M has running time p(n) if for every x ∈ {0, 1}∗, all sequences of transitions stop
within p(|x|) steps.

Definition 7 NTIME(f(n)) is all languages decidable by a NDTM with running time O(f(n)).

Theorem 2 NP =
⋃
c≥1

NTIME(nc)

Proof.

⋃
c≥1 NTIME(nc) ⊆ NP.

Fix L ∈
⋃
c≥1 NTIME(nc) and a NDTM M that decides L in time p(n) for some polynomial p. For all

x ∈ {0, 1}∗ and y ∈ {0, 1}p(n), define M ′ as the PTV that simulates M(x) with transition sequence defined
by y. That is, in the i’th step the simulation of M(x) should use transition function δyi . M

′ accepts x iff
M accepts x on the sequence defined by y. So L ∈ NP and thus

⋃
c≥1 NTIME(nc) ⊆ NP.

NP ⊆
⋃
c≥1 NTIME(nc).

Fix L ∈ NP and let M be a PTV that decides L. Fix x ∈ {0, 1}∗. Define a NDTM M ′ that uses its non-
determinism to create a bit string y of length p(|x|). More specifically, M ′ generates y by writing p(|x|)
bits where each bit will be a 0 if δ0 is used when generating the bit or a 1 if δ1 is used when generating
the bit. Then M ′ then simulates M on input (x, y). M ′ accepts x iff M ′ can generate y ∈ {0, 1}p(|x|)
such that M accepts (x, y). Since M is a PTV and it takes p(|x|) transitions to generate y ∈ {0, 1}p(|x|),
L ∈

⋃
c≥1 NTIME(nc). So NP ⊆

⋃
c≥1 NTIME(nc).

3.2 Reducibility and NP-completeness

Definition 8 L ⊆ {0, 1}∗ is poly-time Karp reducible to L′ ⊆ {0, 1}∗ if there exists a poly-time computable
function f : {0, 1}∗ → {0, 1}∗ such that x ∈ L iff f(x) ∈ L′. We write L ≤p L′ to mean that L is poly-time
reducible to L′.

1Meaning there is no infinite sequence of transitions that does not enter a halting state when starting from the initial snapshot
for x.

Lecture 3: The Class NP 3-3

Definition 9 L′ is NP-hard if for all L ∈ NP, L ≤p L′.

Definition 10 L′ is NP-complete if L′ is NP-hard and L′ ∈ NP

Theorem 3 For any languages L,L′, L′′,

1. L ≤p L′ and L′ ≤p L′′ ⇒ L ≤p L′′

2. If L is NP-hard and L ∈ P, then P = NP.

3. If L is NP-complete, then L ∈ P iff P = NP.

Proof.

1. Fix x ∈ {0, 1}∗. Since L ≤p L′ and L′ ≤p L′′, there exists poly-time computable f and g such that x ∈ L
iff f(x) ∈ L′ and f(x) ∈ L′ iff g(f(x)) ∈ L′′. So x ∈ L iff (g ◦ f)(x) ∈ L′′. And since the composition of
poly-time computable functions remains poly-time computable, L ≤p L′′.

2. Suppose L is NP-hard and L ∈ P. Let M be a poly-time TM deciding L. By Theorem 1, P ⊆ NP. Let
L′ ∈ NP. Since L is NP-hard, L′ ≤p L. Say f is the reduction showing L′ ≤p L. To decide if some string
x ∈ L, a TM could first compute f(x) and then output the result of the computation M(f(x)). In this
way, L′ is be decided in polynomial time. Thus, NP ⊆ P.

3. Suppose L is NP-complete.

Suppose L ∈ P. The previous part then shows P = NP. Now suppose P = NP. Since L is NP-complete,
L ∈ NP. And since P = NP, L ∈ P.

3.2.1 Example of an NP-complete language

Definition 11 TMSAT = {(α, x, 1n, 1t) : there exists u ∈ {0, 1}n such that Mα(x, u) accepts within t steps}

Note this definition assumes we can enumerate all verifiers using strings α ∈ {0, 1}∗ much like we can enumerate
all TMs. This is easily doable, just like it is with TMs.

Theorem 4 TMSAT is NP-complete.

Proof. TMSAT ∈ NP: a verifier M for TMSAT expects, when given input (α, x, 1n, 1t), a string u ∈ {0, 1}n
as its second input. Then M simulates Mα on input (x, u) for t steps and accepts if and only if this simulation
accepted.

To prove TMSAT is NP-hard, fix L ∈ NP and x ∈ {0, 1}∗. So there exists a PTV Mα with running time p(n)
such that x ∈ L iff there exists y ∈ {0, 1}p(|x|) such that Mα accepts (x, y). Note, x can be mapped in polynomial
time to (α, x, 1p(|x|), 1p(|x|)). In this way, (α, x, 1p(|x|), 1p(|x|)) ∈ TMSAT iff there exists u ∈ {0, 1}p(|x|) such that
Mα(x, u) accepts within p(|x|) steps. This occurs iff x ∈ L. So L ≤p TMSAT and thus TMSAT is NP-hard.
Therefore, TMSAT is NP-complete.

