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In the previous notes, we discussed Turing Machines and small variations in the first definition.

But it is convenient to fix some features. From now on, we allow TMs to have any fixed number of tapes and
to use any fixed finite alphabet. By fixed, we mean the number of tapes and the alphabet size is regarded as a
constant when we discuss the running time or space used by a the TM on various inputs x.

We designate one tape to be the input tape. This is a read-only tape, meaning the symbols can never be
replaced by anything else apart from their initial contents. The remaining tapes are work tapes. We may
designate some of these work tapes to have specific tasks, but when we refer to the work tapes we mean all
other tapes apart from the read-only input tape.

The head of the input tape is not allowed to stray beyond the bounds of the input. This is a slightly technical
requirement for when we discuss space complexity. For example, we can enforce this by tweaking the model so
that an input is presented with two delimiting symbols written in the cells around the input: the TM is not
allowed to move the input tape head past these two delimiting symbols.

2.1 Undecidability

We begin by demonstrating that not all functions can be computed. Consider the language UC ⊆ {0, 1}∗
containing every α ∈ {0, 1}∗ such that Mα(α) 6= accept (i.e. the computation either does not halt or it halts
in the state qreject). Notationally,

UC = {α ∈ {0, 1}∗ : Mα(α) 6= accept}.

Theorem 1 The language UC is not decidable by any TM.

Proof. Suppose, for the sake of contradiction, UC is decidable by a TM M . Let α ∈ {0, 1}∗ be an encoding of
M (i.e. Mα = M).

Consider the computation of Mα(α). Because Mα decides UC, it must be that Mα(α) = accept if and only
if α ∈ UC itself. But by definition of UC, we also have Mα(α) = accept if and only if α 6∈ UC. This is a
contradiction.

The proof technique used here is called diagonalization: if such a TM existed then how would it behave when
given its own description as input? The argument used here is similar to other well-known results:

• Cantor’s proof that the real numbers are uncountable.

• Russel’s paradox, eg. the following is not a set: {T : T 6∈ T}.

In fact, one can use Cantor’s argument more directly to show the existence of languages that cannot be decided
by a Turing Machine. The number of Turing Machines is countable as each can be encoded with a finite-length
string in {0, 1}∗. But the number of languages L ⊆ {0, 1}∗ is uncountable as each language L can be thought of
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as an infinite-length bitstring where the i’th bit is 1 if and only if the i’th string in {0, 1}∗ (according to some
fixed ordering of {0, 1}∗) lies in L. Cantor’s proof that the real numbers are uncountable is very easily adapted
to show that the number of infinite-length bitstrings is uncountable.

So, in some sense, “most” languages are not decidable. But “most” languages are not interesting.

2.1.1 The Halting Problem

A more relevant language is HALT = {(α, x) ∈ {0, 1}∗ × {0, 1}∗ : Mα(x) halts}. Note we are again using the
fact that we can somehow encode pairs of inputs, we will not discuss this low-level detail again.

We would really like to be able to decide this language! Knowing if a program would halt on some input is very
valuable information. Unfortunately we cannot.

Theorem 2 The language HALT is not decidable by any TM.

Proof. Suppose MHALT decides HALT. We show how to use Mhalt to decide UC, which will be a contradiction.

Here is a TM MUC deciding UC. On input α it first runs MHALT(α, α). If MHALT(α, α) = reject then we
know Mα(α) does not halt. In this case, we have MUC halt and accept α.

Otherwise, we know Mα(α) is a halting computation. We have MUC simulate Mα(α) until it halts. If Mα(α) =
accept then have MUC reject α, otherwise have MUC accept α.

In this way, MUC decides UC which contradicts the fact UC is not decidable. So HALT is not decidable.

This proof used a reduction. Essentially it showed that HALT is at least as “hard” as UC because a a TM
deciding the former could also be used to decide the latter.

You may have already seen reductions when discussing NP-hardness. Polynomial-time reductions are used to
show that if you have a polynomial-time algorithm for any single NP-hard problem then you can solve any
problem in NP in polynomial time. In this way, NP-hard problems represent the “hardest” problems in NP.
We will revisit this soon in this course.

There is more that can be discussed about decidability of problems. For now, our discussion continues with
more examples of the diagonalization technique.

2.2 Time Complexity

Definition 1 For any function T : N→ N, let DTIME(T (n)) be all languages that can be decided by a Turing
machine with running time O(T (n)).

The D stands for deterministic, as we will shortly be covering variants of the standard Turing machine model
and will need separate notation to discuss time complexity with those variants.

We can now properly define perhaps the most well-known class in complexity theory.

Definition 2 P =

∞⋃
c=0

DTIME(nc).

That is, P is all languages that can be decided in polynomial time. You know many of these languages:
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• The language of connected graphs.

• The language of various arithmetic operations, such as {(a, b, c) : a · b = c}.

• The language of prime numbers (the algorithm is not obvious).

The famous P vs. NP problem asks if there are some problems in NP that cannot be solved in polynomial
time. But let us start with more basic questions. Do we know if there are even decidable problems that cannot
be solved in polynomial time?

Thankfully, we can at least answer this question. But we need a technical definition.

Definition 3 A function T : N → N is a time-constructible function if there is a TM which, given some
input x, runs for exactly T (|x|) steps.

Note that functions like blog(x+ 1)c are not time constructible. It takes |x| time just for the TM to scan x to
determine its length. Essentially all interesting functions T with T (n) ≥ n+ 1 are time constructible including
polynomials, factorials, and exponentials. This is a programming exercise that we skip.

Theorem 3 (Time Hierarchy Theorem) For any time-constructible function f(n) ∈ Ω(n), DTIME(f(n)) (
DTIME(f(n) · log f(n)).

The proof uses the fact that a universal Turing machine exists that can simulate any Turing machine with
logarithmic overhead in the running time. But we did not discuss this in the previous lecture. Using this TM
we discussed last lecture in the following proof would show DTIME(f(n)) ( DTIME(O(g(n))2) if we have
f(n) ∈ Ω(n2).

Proof. We prove a marginally weaker result. That there is some g(n) ∈ O(f(n) log f(n)) and some language Lf
such that Lf can be decided in time g(n) but not in time f(n). The full extension to the asymptotic definition
of DTIME follows essentially the same main ideas, but contains a number of distracting, low-level details.

Consider the language

Lf = {α ∈ {0, 1}∗ : Mα does not accept input α in within f(|α|) steps}.

Note this is akin to the language UC from the start of these notes, except we are concerned with accepting
within a given time bound rather than just accepting in finite time.

Now consider the following TM Mf that decides Lf . On input α, Mf does the following:

• Write a string of f(|α|) 0s to a “clock” tape.

• Simulates the computation of Mα(α) for up to f(|α|) steps. This can be done using the same algorithm
as the universal TM, except after each simulated step of Mα it increments the head on the clock tape. If
Mα(α) does not halt within f(|α|) steps (i.e. the clock tape head goes past the 0s), the simulation stops.

• IfMα(α) halted within f(|α|) steps, then haveMf output the opposite of whatMα(α) output. Otherwise,
have Mf accept.

It is easy to check that Lf is indeed the language decided by Mf .

Let g(n) be the best possible bound on the running time of Mf . Observe g(n) ∈ O(f(n) · log f(n)) because the
universal simulation has only logarithmic overhead and, by time constructibility, we can produce the 0s on the
clock tape in O(f(|x|)) time.
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We claim Lf cannot be decided by a TM with running time bound f(n) to finish the proof. Suppose otherwise,
that there is a TM M∗ deciding Lf in time f(n). In particular, Mf (α) = M∗(α) for each possible input α.

Now for the diagonalization part. Pick α ∈ {0, 1}∗ to be an encoding of M∗. Then in the calculation of Mf (α),
the simulation of M∗(α) will stop after f(|α|) simulated steps and Mf (α) will output the opposite of M∗(α).
This is our contradiction.

We can now show that some decidable problems cannot be solved in polynomial time. First, consider some
shorthand notation for exponential time algorithms.

Definition 4 E = DTIME(2n) and EXP =

∞⋃
c=0

DTIME(2n
c

).

Theorem 4 P ( E.

In fact, the following proof shows that if g(n) is any function that is not O(nc) for any constant c, such as nlogn,
then P ( DTIME(O(g(n))).

Proof. Simply put
P ⊆ DTIME(2n/n) ( DTIME(2n).

The first inclusion is because any polynomial is asymptotically bounded by 2n/n. The second is by the Time
Hierarchy theorem.

2.3 Space Complexity

Another resource we often care about is the amount of space or memory required to solve a problem.

Definition 5 For any function S : N→ N, let DSPACE(S(n)) be all languages that can be decided by a Turing
machine such that the number of cells of all work tapes that are visited by the tape head at some point in the
computation is O(S(n)).

Of course, an input x will use |x| non-blank cells. We are concerned with how much space is used in addition
to the input but we don’t want to cheat by allowing the input cells to, later, be used to store other contents of
memory. This is why we require the input to be read-only.

We have a Space Hierarchy theorem as well. But first we again need to discuss what it means to be space
constructible.

Definition 6 A function S : N → N is a space-constructible function if there is a TM which, given some
input x, stops after using precisely S(|x|) space.

Theorem 5 (Space Hierarchy Theorem) Let f(n) be a space-constructible function. For any g(n) ∈ ω(f(n)),
DSPACE(f(n)) ( DSPACE(g(n)).

Note that blog2(n+1)c is space constructible (a slightly pesky exercise), even though it is not time constructible.
So we can even conclude that DSPACE(log n) ( DSPACE(log n · log log n).
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Unlike the Time Hierarchy theorem, this says that any asymptotic increase in the allowed space yields a more
powerful complexity class.

Proof.[sketch] The proof is essentially the same as the Time Hierarchy theorem. There are two main differences.
First, observe that universal simulation of a TM can be done with only constant overhead in the amount of
space used (which is why we get the Space Hierarchy separation for any g ∈ ω(f(n))). Second, we consider

Lf = {α ∈ {0, 1}∗ : Mα does not accept input α using only f(|α|) space}.

The TM we construct in this proof will simulate Mα(α) and terminate it prematurely if it ever uses more than
f(|x|) space. The rest of the proof proceeds like before using the diagonalization argument

We can define two common space complexity classes.

Definition 7 L = DSPACE(log n) and PSPACE = ∪∞c=0DSPACE(nc).

In a way similar to how we proved P ( E, we can show:

Theorem 6 L ( PSPACE.

2.4 Relationships Between Time and Space

Theorem 7 For any function f(n) ∈ Ω(log n), DTIME(f(n)) ⊆ DSPACE(f(n)) ⊆ DTIME
(
2O(f(n))

)
.

Note the slightly informal use of DTIME
(
2O(f(n))

)
. By this, we mean

⋃
g∈O(f(n))

DTIME
(

2g(n)
)

. We will

occasionally use notation like this.

Proof. If a Turing Machine runs in time O(f(n)), it necessarily uses O(f(n)) space because each step can have
each of its heads change by at most 1 position. So the first inclusion is simple.

For the second inclusion, we show that if a TM M always halts using space O(f(n)) then it runs in time
2O(f(n)). Let k be the number of tapes of M and Γ the alphabet and say that M uses at most g(n) space for
some g(n) ∈ Θ(f(n)).

Consider some fixed input x to M . Let C be all cells of all work tapes that are visited by the head at some
point. Note |C| ≤ g(|x|). Let ΓC be all possible assignments of symbols to cells in C.

Since every cell outside of C remains blank throughout the entire computation, then we can specify a snapshot
of the computation by just specifying the contents of C, the state, and the head positions.

That is, a snapshot can be specified simply by a tuple in S := Q × [0, |x| + 1] × [−g(|x|), g(|x|)]k−1 × ΓC . The
term [0, |x| + 1] is the position of the input head and the term [−g(|x|), g(|x|)]k−1 are for the positions of the
remaining heads.

No two steps of the computation of M(x) have the same snapshot, or else the TM would be stuck in a loop
including this snapshot and would not halt (i.e. a snapshot entirely determines the next snapshot). So the
number of steps taken by M(x) is at most

|S| = |Q| · (x+ 2) · (2g(|x|) + 1)k · 2g(|x|)·log2 |Γ|.

As |Q|, |Γ| are constants independent of |x| and since g(n) ∈ Ω(log n), this quantity is bounded by 2O(g(|x|)).

Note this proof does not even require us to modify TMs to show the inclusions. A TM using time O(f(n))
necessarily uses space O(f(n)) and a TM using space O(f(n)) necessarily uses time 2O(f(n)).
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2.4.1 On Time and Space Constructibility

The requirement of having f(n) be time constructible in the Time Hierarchy theorem may seem like a technical
requirement to make the proof easier. But it is an essential assumption! The results here are presented without
proof. Let me know if you want references.

Theorem 8 There is a computable function f(n) that tends to ∞ such that DTIME(f(n)) = DTIME(2f(n)).

While such an f(n) is computable, it is a very strange function. One should not take this result too seriously.
Really it says that computation is not very “well behaved” at this level.

In the same vein, we have another strange result that shows space constructibility is required in the Space
Hierarchy theorem.

Theorem 9 For any g = o(log log n), DTIME(g(n)) = DTIME(1).

In fact, the proof shows that any TM that uses o(g(n)) work space necessarily uses O(1) space. It is impossible
to construct a TM that uses, say, Θ(log log log n) work space. This result is tight in the following sense: it is
known that DTIME(1) ( DTIME(log log n).


