
CMPUT 675 - Winter 2019

Take Home Final Assignment

Due Friday, April 26 by 3:00pm

All Exercises have the same weight, regardless of their difficulty. You are allowed to skip two
exercises freely with no penalty. As always, let me know if something is not clear.

It is highly recommended that you typeset your solutions in LATEX. I still want hard copies of your
solution, so submit a printout if you do typeset it. The only exception is the first question, everyone
must submit it by email (unless you are using it as a “skipped” question).

Unlike the assignments which adopted the collaboration model, you must complete everything
individually without discussion of any form with anyone else except the instructor.

Finally, if you don’t find me in person to drop off the exam then please slide your exam under my
door (ATH 3-06) and email me if you have done so.

Pages: 5

Exercise 1: Designing A Turing Machine (Again)
For a string s ∈ {0, 1}∗, consider the unique way to break s into its maximal substrings s1, . . . , sm

each consisting of only 0s or only 1s. For example, if s = 0011110100011 then m = 6 and

s1 = 00, s2 = 1111, s3 = 0, s4 = 1, s5 = 000, s6 = 11.

Call such a string valid if |s1| = 1 and |si−1| ≤ |si| ≤ |si−1|+ 1 for every other 2 ≤ i ≤ m. Observe
the example above is not valid. The empty string is not valid.

Examples of valid strings:

0101100111, 0, 101010, 100111000011111000000.

More examples of invalid strings:

1100111, 10110, 10011100001110000.

The first of these is not valid because it begins with a run of length 2. The second is not valid
because the last run has length 1 whereas the previous run has length 2. The last example is not
valid because the last run of 1s has length 3 but the preceding run has length 4.

Let Valid ⊆ {0, 1}∗ be the language of all valid strings. Design a Turing machine to decide Valid.

You must implement your solution as a complete and correct program that runs on the Turing
machine simulator found at

https://turingmachinesimulator.com/

1

https://turingmachinesimulator.com/

Consult the documentation and examples on that page to understand how to specify and run a TM
on the site. You may use any number of tapes to do this1; I suggest 2 tapes. You may only use 0,
1, and blank symbols. Do not forget to recompile before testing if you make changes to
the “code” ,.

If you don’t want to create an account, you can just copy/paste the code into your own plain text
file to save it.

Submit your code to me by email attached as a plain-text .txt file. You should have some comments
in the code explaining how your solution works. I should be able to test it by copy/pasting into
the simulator.

Exercise 2: Indecisive Turing Machines
Define an indecisive verifier to be a verifier with three halting states: qaccept, qreject and qunsure.
Say that an indecisive verifier V decides a language L if the following is true for each x ∈ {0, 1}∗:

• x ∈ L⇒ ∃π ∈ {0, 1}∗ such that V (x, π) = qaccept and ∀π′ ∈ {0, 1}∗, V (x, π′) ∈ {qaccept, qunsure}.

• x /∈ L⇒ ∃π ∈ {0, 1}∗ such that V (x, π) = qreject and ∀π′ ∈ {0, 1}∗, V (x, π′) ∈ {qreject, qunsure}.

If you prefer, a nondeterministic variant where π is replaced by nondeterministic transitions works
as well. Just indicate if you are taking this view in your solution.

Let INP be the class of all languages that are decided by an indecisive verifer V whose running
time is poly(|x|).

Prove INP = NP ∩ co-NP.

Exercise 3: Another NL-Complete Problem
In the class, we saw that determining if there is a directed s − t path in a graph is NL-complete
with respect to implicitly log-space computable reductions. Now consider the following language:

LSC = {A : A is the {0,1}-adjacency matrix of a strongly connected digraph}.

Recall that a digraph is strongly connected if and only if for every two vertices u, v, there is a
directed path from u to v.

Show that LSC is NL-complete with respect to implicitly log-space computable reductions.

Exercise 4: Randomized Logspace Complexity
For this exercise, you should take the view of probabilistic TMs as being those with two transition
functions, where each step randomly picks one (i.e. do not take the verifier view). This is especially
important in the second part.

Let BPL be all languages L that can be decided by a probabilistic Turing machine M that always
runs in polynomial time and always uses O(log n) work space such that for x ∈ {0, 1}∗,

• x ∈ L ⇒ Pr[M(x) = accept] ≥ 2/3, and

1Open a 2- or 3-tape example and then edit it yourself to start a multi-tape project.

• x /∈ L ⇒ Pr[M(x) = reject] ≥ 2/3.

So BPL is to L as BPP is to P.

• Show that BPL ⊆ P.

Hint: Compute the probability the computation ends up in an accepting state for a given
input x either with dynamic programming or matrix multiplication.

Now consider another complexity class ZPL consisting of languages L decidable by a probabilistic
Turing machine M that always uses O(log n) work space and never terminates with the incorrect
solution. But their expected running time is not required to be bounded, we simply have the
guarantee that M halts with probability 1.

• Give an example of such a machine where the expected running time is exponential in n.

Hint: First try building a directed graph with, say, m nodes (m has nothing to do with
the problem at hand, it is just for this hint) with out-degree 2 at each node such that the
expected number of steps of a random walk to get from node 1 to node m is at least 2m.

Then try to emulate this behaviour with the computation of some probabilistic TM. It is
ok if the machine performs superfluous work that does not seem to be helping it decide the
problem (i.e. the only purpose of the extra work is to answer this question).

• Still, argue ZPL ⊆ P.

Exercise 5: Adaptive PCPs
Suppose we allowed PCP verifiers to be adaptive. That is, consider an (r(n), q(n))-PCP verifier V
taking inputs x, y, π where x is an instance of the language to be decided, y is the random string,
and π is the proof string (into which V has random access). The first proof position i1 is a function
of the input x and the random string y, but each subsequent queried proof position ij is a function
of (x, y, πi1 , πi2 , . . . , πij−1).

That is, V can decide the next position to query after looking at a few bits. We still require V to
run in polynomial time.

For each r(n) ∈ ∪c≥0O(nc) and q(n) ∈ O(log n), show that if L is decided by an adaptive
(r(n), q(n))-PCP verifier then it is also decided by a nonadaptive (i.e. standard) (r(n), 2q(n) − 1)-
PCP verifier.

Note: This means the statement of the main PCP theorem with q(n) ∈ O(1) remains (qualitatively)
the same whether we use adaptive or nonadaptive verifiers.

Exercise 6: Short Keys and Perfect Secrecy
We saw that if P = NP, then for any efficient encryption scheme that uses keys that are even just
one bit shorter than the message, there is an efficient algorithm that can distinguish between some
messages with good probability.

Here, you will show that without the complexity assumption, true perfect secrecy is still not possible
using encryption schemes with short keys. That is, suppose (E,D) is an encryption/decryption

scheme using keys of length K(n). Show for any n such that K(n) < n that there are messages
x, y ∈ {0, 1}n such that

Prk∼{0,1}K(n) [Ek(x) = z] 6= Prk∼{0,1}K(n) [Ek(y) = z]

for some z ∈ {0, 1}∗.

Exercise 7: Reducing Random Bits for BPP Algorithms
Let G = (V ;E) be an (n, d, λ)-expander. Consider some B ⊆ V and say β = |B|/|V |. Also consider
a standard random walk v0, v1, . . . , vk of length k in G. That is, v0 is chosen uniformly from V and
then vi is chosen uniformly among the neighbours of vi−1 for 1 ≤ i ≤ k. By this, we mean we first
uniformly sample a random edge exiting vi−1 and set vi to be the other endpoint of this edge: it
could be vi−1 = vi if this edge is a loop.

• For every I ⊆ {0, . . . , k}, argue Pr[
∧
i∈I(vi ∈ B)] ≤ ((1− λ) ·

√
β + λ)|I|−1.

You can just mention the relevant parts that need to be modified in the proof was saw for a
similar result.

• Conclude if |B| ≤ n/100 and λ < 1/100, the probability there is some I ⊆ {0, . . . , k} such
that |I| > k/10 and vi ∈ B for all i ∈ I is at most 2−k/100. The constants (eg. 1/100, 1/10)
here do not matter too much, so long as whatever you do prove will allow you to correctly
answer the next part.

• Use this to show that every BPP algorithm A that flips m coins and outputs the correct
answer (for the language it is deciding) with probability ≥ 2/3 can be turned into another
BPP algorithm that, for any k being bounded by a polynomial in the input size, uses O(m+k)
coins and outputs the correct answer with probability ≥ 1−2−k. Note this is an improvement
over our earlier result for improving error bounds for BPP that gets the same error bound,
but using O(m · k) coins.

You may use, without proof, that for every 0 < λ < 1 there is some d such that for every n ≥ 1
there is a strongly-explicit (n, d, λ)-expander. If you are curious, this can be proven by piecing
together parts of what we covered in the course plus the proof of Theorem 21.19 from the book (we
did not cover this).

Exercise 8: Beyond The Halting Problem
For any constant k ≥ 0, consider the following complexity class REk. A language L ⊆ {0, 1}∗
lies in REk if there is a deterministic Turing machine M that halts on every input such that for
x ∈ {0, 1}∗:

• x ∈ L if and only if
∃y1 ∈ {0, 1}∗ ∀y2 ∈ {0, 1}∗ ∃y3 ∈ {0, 1}∗ . . . Qkyk ∈ {0, 1}∗ M(x, y1, y2, . . . , yk) = accept.

Here, Qk will be ∃ if k is odd and Qk will be ∀ if k is even. Similarly, define co-REk to be all
languages L such that L ∈ REk which can, alternatively, be defined in the same way as REk except
the order of quantifiers is ∀ ∃ ∀ ∃

Your mark for this exercise will be based on your best answers to 5 of the parts below, so feel free
to skip a part if you want (it will not count against your ≤ 2 free questions).

1. Show Halt ∈ RE1 where Halt = {(α, x) : Mα(x) halts after a finite number of steps}.

2. Call a language L ⊆ {0, 1}∗ recursively enumerable if there is some Turing machine M
such for x ∈ {0, 1}∗ we have M(x) = accept if and only if x ∈ L. But if x /∈ L we do not
require M(x) to halt.

Argue that a language L is recursively enumerable if and only if L ∈ RE1.

3. Consider the language AlwaysHalts = {α ∈ {0, 1}∗ : Mα halts on every input}.
Show AlwaysHalts ∈ co-RE2 − co-RE1.

Hint: It might help if you can prove why Halt itself is not in co-RE1.

4. Show REk+1 6= REk for all k ≥ 0.
Hint: The case k = 0 was already proven in the lectures (using different terminology). Simply
generalize the proof.

5. Show there is some L ⊆ {0, 1}∗ such that L /∈ REk for any k ≥ 0.

6. Show REHalt
1 = RE2. Here, REHalt

1 is the same definition as RE1 except the TM M in the
definition has oracle access to Halt.
Hint: To show REHalt

1 ⊆ RE2, try using quantified variables to “guess” the result of each
oracle call and to certify this guess. Partial credit if you show REHalt

1 ⊆ REk for some k ≥ 3
if you can’t get the inclusion with k = 2.

