
CMPUT 675 - Winter 2019

Assignment #2 - Due Feb 26 (Tuesday) by 12:30pm

All Exercises have the same weight, regardless of their difficulty. You are allowed to skip one
exercise freely with no penalty. If you answer all questions, I will drop the one with the lowest
mark when computing your mark for this assignment.

It is highly recommended that you typeset your solutions in LATEX. I still want hard copies of your
solution, so submit a printout if you do typeset it.

Pages: 3

Exercise 1: Easy Warmup

Show that if SAT ≤p SAT then PH = NP.

Exercise 2: Efficient Zero-Error Algorithms for NP

Show that if any NP-complete language lies in co-RP then NP = ZPP.

Exercise 3: Verifiers for NL

In the lectures, we defined verifiers for NL as those where the head of the second tape (the proof
tape) cannot move left.

Consider the slightly weaker restriction where the verifier is simply restricted to read-only access to
the proof tape but the head may move back and forth. Specifically, say that NL′ is all languages
L such that there is a verifier M expecting inputs x, y on two separate input tapes where:

• The two input tapes containing x and y (respectively) are read-only.

• M uses O(log |x|) space on the remaining work tapes.

• M only reads up to the first p(|x|) bits of y for some polynomial p.

• If x ∈ L then there is some y ∈ {0, 1}p(|x|) such that M(x, y) = accept.

• If x /∈ L then for any y ∈ {0, 1}p(|x|) we have M(x, y) = reject.

Show that NL′ = NP.

1

Exercise 4:
∑

k SAT

Show for every integer k ≥ 1 that
∑

k SAT is complete (with respect to Karp reductions) for
∑p

k.

Hint, essentially from the book
One can avoid an involved “Cook-Levin-style reduction” by simply using the fact that TMSAT ≤p

SAT as a black box.

Exercise 5: Intersections of Different Languages in NP and co-NP

Let DP be all languages L such that there are two languages L1 ∈ NP and L2 ∈ co-NP and
L = L1 ∩ L2. Note: this is not necessarily (and likely not) the same as NP ∩ co-NP.

Recall ExactIndSet = {(G, k) : the largest independent set in G has size exactly k}.

• Show ExactIndSet ∈ DP.

• Show L ≤p ExactIndSet for every L ∈ DP.

Hint: Recall we already proved that Indset is NP-complete in Lecture 4. This is also found in
Theorem 2.15 from the book.

Exercise 6: Even Smaller Circuits

In the lectures, we briefly discussed how any f : {0, 1}n → {0, 1} has a circuit of size O(n · 2n): for
example the circuit could be simply the OR of a bunch of AND-clauses that are indicators for each
x with f(x) = 1. In this exercise, you will get asymptotically better results.

Easier - For Partial Credit: Show every f : {0, 1}n → {0, 1} has a circuit of size at most c · 2n
for some absolute constant c (i.e. that does not depend on n).

Harder - For Full Credit: For all n ≥ 1, show every f : {0, 1}n → {0, 1} has a circuit of size at
most c′ · 2n/n for some absolute constant c′.

Hint from the book (for the easier part)
Consider writing

f(x1, . . . , xn) = (xn ∧ f ′(x1, . . . , xn−1)) ∨ (xn ∧ f ′′(x1, . . . , xn−1))

for some appropriate functions f ′, f ′′ over {0, 1}n−1 and use induction on n.

Hint for the harder part
Start with the same idea, but include “memoization” of circuits depending on only a few inputs to
avoid recalculating the same circuit multiple times. Here “a few” is a slow growing function of n.

Exercise 7: Circuit Lower Bounds in PH

For every k ≥ 1, show PH contains a language L that requires circuits of size Ω(nk). That is,
L 6∈ SIZE(f(n)) for any f(n) ∈ o(nk).

Hint from the book
Keep in mind the proof of existence of functions with high complexity, you might want to look at
the proof of the Nonuniform Hierarchy Theorem (Theorem 6.22 in the book) to see an example
of how to project this hardness down to smaller size bounds than O(2n/n). Try to show that you
can compute the lexicographically smallest such function using a constant number of quantifiers for
some notion of lexicographically smallest.

It is possible to find languages L in
∑p

2 that require circuits of size Ω(nk) for any fixed k, but you
can use any (fixed) number of quantifications you require to solve the problem.

Exercise 8: Exploring Randomized Reductions

Say that a probabilistic Turing Machine M computes a randomized reduction from a language L′

to a language L if, when given x ∈ {0, 1}∗, M randomly computes some output1 M(x) ∈ {0, 1}∗ in
polynomial time such that:

• x ∈ L⇒ Pr[M(x) ∈ L′] ≥ 2/3

• x 6∈ L⇒ Pr[M(x) ∈ L′] ≤ 1/3

Generally, we say L ≤r L′ if there is a polynomial-time probabilistic TM M that computes a
randomized reduction from L to L′.

• Show that if SAT ≤r L for some L ∈ P then NP ⊆ BPP.

• The relation ≤r is not, strictly speaking, transitive. But “practically speaking” it is: show
that if there are languages L,L′ such that SAT ≤r L, L ≤r L

′, and L′ ∈ P then NP ⊆ BPP.

• Now consider all languages randomly-reducible to SAT: define BP ·NP = {L : L ≤r SAT}.
The motivation for this class is to consider what problems could be solved by an efficient
randomized algorithm if we could solve SAT efficiently. Clearly NP ⊆ BP ·NP, but does it
capture more languages?

Maybe not, show that if SAT ∈ BP ·NP then PH =
∑p

3.

Hint for the last part, from the book
Follow the ideas of the proof of the Karp-Lipton Theorem showing if NP ⊆ P/poly then PH =

∑p
2.

1Temporarily override our notation of M(x) ∈ {Accept,Reject} for this exercise. Here, M(x) is the contents of
some tape (designated the output tape) when M halts given input x.

