
CMPUT 675 - Winter 2019

Assignment #1 - Due Feb 7 by 12:30pm

All Exercises have the same weight, regardless of their difficulty. You are allowed to skip one
exercise freely with no penalty. If you answer all questions, I will drop the one with the lowest
mark when computing your mark for this assignment.

It is highly recommended that you typeset your solutions in LATEX. I still want hard copies of your
solution, so submit a printout if you do typeset it. The only exception is the first question, everyone
must submit it by email (unless you are using it as your “skipped” question).

Pages: 4

Exercise 1: Designing A Turing Machine
Design a Turing machine that decides the following language.

L = {x ∈ {0, 1}∗ : x = yy for some y ∈ {0, 1}∗}

For example, 101101 and 00110011 are in L but 110011 and 111 are not in L.

You must implement your solution as a complete and correct program that runs on the Turing
machine simulator found at

https://turingmachinesimulator.com/

Consult the documentation and examples on that page to understand how to specify and run a
TM on the site. You may use up to 2 tapes to do this1. You may only use 0, 1, and blank symbols.
Do not forget to recompile before testing if you make changes to the “code” ,.

If you don’t want to create an account, you can just copy/paste the code into your own plain text
file to save it.

Submit your code to me by email attached as a plain-text .txt file. You should have some comments
in the code explaining how your solution works. I should be able to test it by copy/pasting into
the simulator.

Exercise 2: Busy Beaver and Some Number Theory
Let λ ∈ {0, 1}∗ denote the empty string, so |λ| = 0. For n ≥ 1, let Mhalt

n be all single-tape Turing
machines M with ≤ n states (apart from the halting states) and alphabet Γ = {0, 1,�} such that
M halts when given λ as input.

For a Turing Machine M ∈ Mhalt
n , let steps(M) be the number of steps taken by M when given

the empty string as input.

Consider the busy beaver function BB : N≥1 → N given by

BB(n) = max{steps(M) : M ∈Mhalt
n }.

1Open a 2-tape example and then edit it yourself to start a 2-tape project.

1

https://turingmachinesimulator.com/

Note that BB(n) is well-defined: it is easily seen that Mhalt
n 6= ∅: eg. some TMs immediately

transition to a halting state.

• Show that no TM can compute BB(n) for all n ≥ 1.

• Consider Goldbach’s Conjecture: Every even integer n ≥ 4 can be expressed as the sum of
two primes. For example, 4 = 2 + 2, 24 = 7 + 17 and 3572 = 101 + 3461. Resolving this
conjecture is still an open problem.

Show there is a TM M such that M(λ) = accept if Goldbach’s conjecture is true and
M(λ) = false if Goldbach’s conjecture is false.

Furthermore, show there is some constant n0 such that if we have a value x and a proof that
BB(n0) = x then we can use these to algorithmically generate either a proof or a refutation
of Goldbach’s conjecture in finite time!

Exercise 3: Running-Time Bounds
Question 3.1 from the book.

Show that the following language is not decidable.

{α ∈ {0, 1}∗ : for some c, d > 0,Mα halts within c · |x|2 + d steps on every input}.

Hint: Show how to decide Halt if you had a TM deciding this language.

Exercise 4: Exactly One 3SAT
Question 2.17 from the book.

In the problem Exactly-One-3SAT, we are given a 3CNF instance ϕ = (X, C), just like with
E3SAT. The goal is to determine if there is a truth assignment τ : X → {True,False} such that
exactly one literal is True under τ in each clause of ϕ .

Show that Exactly-One-3SAT is NP-complete.

Hint from the textbook
Replace each occurrence of a literal `i in a clause C ∈ C of an E3SAT instance by a new variable
zi,C . Add clauses and further auxiliary variables to the Exactly-One-3SAT instance you are
constructing to ensure that if `i is True then zi,C is allowed to be either True or False but if `i
is False then zi,C must be False.

Exercise 5: Cook Reductions
Part of this is found in Question 2.14 from the book.

A language L is Cook reducible to a language L′ if L ∈ PL′
. Here, PL′

is the set of all languages
that are decidable by polynomial-time oracle TMs with oracle access to L′.

Recall, from the lectures, that L ≤p L′ means L is polynomial-time Karp reducible to L′. That
is, there is a polynomial-time computable function f : {0, 1}∗ → {0, 1}∗ such that for x ∈ {0, 1}∗,
x ∈ L if and only if f(x) ∈ L′.

• Show that the notion of Cook reductions is weaker than the notion of Karp reductions. That
is, for two languages L,L′ prove that L ≤p L

′ implies L is Cook reducible to L′.

• Say a language L′ is NP-hard with respect to Cook reductions if every language L ∈ NP is
Cook reducible to L′. Show if there is some L′ ∈ P that is also NP-hard with respect to
Cook reductions, then P = NP.

• Show that the notion of Cook reductions is transitive.

• Show that SAT is Cook reducible to Tautology (the language of all Boolean expressions
that are true under every truth assignment).

• Show that if SAT ≤p Tautology then NP = co-NP.

Exercise 6: Quadratic Equations
Question 2.20 from the book.

Let QUADEQ be the language of all satisfiable systems of quadratic equations over Z/2Z (integers
modulo 2). That is, an instance has variables x1, . . . , xn and constraints of the form∑

i,j

ai,j · xi · xj = b

for some given ai,j ∈ Z/2Z and some b ∈ Z/2Z.

For example, consider the following instance with variables x1, x2, x3, x4 and three constraints:

x1 · x3 + x2 · x2 + x3 · x4 = 1

x1 · x1 + x3 · x3 = 0

x1 · x4 + x1 · x2 + x2 · x3 + x2 · x4 = 0

Here, equality is modulo 2: 1+1 = 0 when working over Z/2Z. Note the left side of each expression
has each term being a product of variables. There are no linear terms.

An instance is satisfiable if it is possible to assign values in Z/2Z to the variables x1, . . . , xn so
all equalities hold. For example, the assignment (x1, x2, x3, x4) → (1, 0, 1, 0) satisfies the three
quadratic equalities above.

Show QUADEQ is NP-complete.

Note: This is not just an artificial problem, it will be an important starting point when we talk
about how to probabilistically verify certificates for languages in NP by only querying a constant
number of bits.

Hint
Exploit the fact that xi · xi = xi (mod 2).

Exercise 7: Very Sparse Languages
Question 2.10 from the book.

Call a language L unary if for each n ≥ 0, L ∩ {0, 1}n is empty or only contains 1n. Show that if
some unary language is NP-hard then P = NP.

Hint
Given a CNF instance φ, generate a set of pairs {(f(ψi), ψi)} where each ψi is a CNF instance such
that φ is satisfiable if and only if one of the ψ is satisfiable. Evolve this set by trying both ways to
fix the assignment to a particular variable but be careful to make sure the set of pairs continues to
have polynomial size throughout this process.

Exercise 8: Ladner’s Function is Efficiently Computable
This is essentially Question 3.6.a) from the book. All logarithms are base-2 logarithms.

Recall the function H used in the proof of Ladner’s theorem. That is, H(n) is the minimum
i ≤ log log n such that for every x ∈ {0, 1}∗ with |x| ≤ log n, the computation of Mi(x) halts within
i · |x|i steps and correctly decides if x ∈ SATH . If there was no such i, we use H(n) = log log n.
Here, we are sayings that Mi is Mα where α ∈ {0, 1}∗ is the binary encoding of i.

The use of log log n is slightly informal as it is not defined for all natural numbers n and does not
always produce an integer. For the sake of concreteness, use g(n) := dlog(dlog(n + 2)e)e which is
computable in poly(n) time. You don’t have to show this, just assume it. The proof of Ladner’s
theorem works with this concrete function2.

Show that H(n) can be computed in poly(n) time.

The book gives a really strong hint (copied below). Your job is just to put the pieces together by
describing the algorithm with some care and providing a good accounting of the running time.

Hint from the book
The essential ingredients are (1) we need to recursively computeH(i) on every i ≤ log n, (2) simulate
O(log log n) machines, each on various inputs of length O(log n) for at most g(n) · (log n)g(n) =
o(n) steps (you should prove this asymptotic bound), and (3) decide SAT on instances of size
O(log n). One can design such an algorithm deciding H(n) with running time T (n) satisfying
T (n) ≤ n · T (log n) +O(n2), which simplifies to O(n2).

2Of course, if we are being picky we have to tweak a other things to make H(n) precise, such as the problem that
i · |x|i = 0 for the empty string x but you don’t have to do this.

