CMPUT 675 - Winter 2019
 Assignment \#1 - Due Feb 7 by 12:30pm

All Exercises have the same weight, regardless of their difficulty. You are allowed to skip one exercise freely with no penalty. If you answer all questions, I will drop the one with the lowest mark when computing your mark for this assignment.
It is highly recommended that you typeset your solutions in $\mathrm{EA}_{\mathrm{E}} \mathrm{X}$. I still want hard copies of your solution, so submit a printout if you do typeset it. The only exception is the first question, everyone must submit it by email (unless you are using it as your "skipped" question).

Pages: 4

Exercise 1: Designing A Turing Machine

Design a Turing machine that decides the following language.

$$
\mathcal{L}=\left\{x \in\{0,1\}^{*}: x=y y \text { for some } y \in\{0,1\}^{*}\right\}
$$

For example, 101101 and 00110011 are in \mathcal{L} but 110011 and 111 are not in \mathcal{L}.
You must implement your solution as a complete and correct program that runs on the Turing machine simulator found at
https://turingmachinesimulator.com/
Consult the documentation and examples on that page to understand how to specify and run a TM on the site. You may use up to 2 tapes to do this ${ }^{1}$. You may only use 0,1 , and blank symbols. Do not forget to recompile before testing if you make changes to the "code" ©.

If you don't want to create an account, you can just copy/paste the code into your own plain text file to save it.

Submit your code to me by email attached as a plain-text .txt file. You should have some comments in the code explaining how your solution works. I should be able to test it by copy/pasting into the simulator.

Exercise 2: Busy Beaver and Some Number Theory

Let $\lambda \in\{0,1\}^{*}$ denote the empty string, so $|\lambda|=0$. For $n \geq 1$, let $\mathcal{M}_{n}^{\text {halt }}$ be all single-tape Turing machines M with $\leq n$ states (apart from the halting states) and alphabet $\Gamma=\{0,1, \square\}$ such that M halts when given λ as input.

For a Turing Machine $M \in \mathcal{M}_{n}^{\text {halt }}$, let $\operatorname{steps}(M)$ be the number of steps taken by M when given the empty string as input.
Consider the busy beaver function $\mathrm{BB}: \mathbb{N}_{\geq 1} \rightarrow \mathbb{N}$ given by

$$
\mathrm{BB}(n)=\max \left\{\operatorname{sTEPs}(M): M \in \mathcal{M}_{n}^{\text {halt }}\right\}
$$

[^0]Note that $\operatorname{BB}(n)$ is well-defined: it is easily seen that $\mathcal{M}_{n}^{\text {halt }} \neq \emptyset$: eg. some TMs immediately transition to a halting state.

- Show that no TM can compute $\operatorname{BB}(n)$ for all $n \geq 1$.
- Consider Goldbach's Conjecture: Every even integer $n \geq 4$ can be expressed as the sum of two primes. For example, $4=2+2,24=7+17$ and $3572=101+3461$. Resolving this conjecture is still an open problem.

Show there is a TM M such that $M(\lambda)=$ ACCEPT if Goldbach's conjecture is true and $M(\lambda)=$ FALSE if Goldbach's conjecture is false.

Furthermore, show there is some constant n_{0} such that if we have a value x and a proof that $\mathrm{BB}\left(n_{0}\right)=x$ then we can use these to algorithmically generate either a proof or a refutation of Goldbach's conjecture in finite time!

Exercise 3: Running-Time Bounds

Question 3.1 from the book.
Show that the following language is not decidable.

$$
\left\{\alpha \in\{0,1\}^{*}: \text { for some } c, d>0, M_{\alpha} \text { halts within } c \cdot|x|^{2}+d \text { steps on every input }\right\} .
$$

Hint: Show how to decide Halt if you had a TM deciding this language.

Exercise 4: Exactly One 3SAT

Question 2.17 from the book.
In the problem Exactly-One-3SAT, we are given a 3CNF instance $\varphi=(X, \mathcal{C})$, just like with E3SAT. The goal is to determine if there is a truth assignment $\tau: X \rightarrow\{$ True, False\} such that exactly one literal is True under τ in each clause of φ.

Show that Exactly-One-3SAT is NP-complete.

Hint from the textbook

Replace each occurrence of a literal ℓ_{i} in a clause $C \in \mathcal{C}$ of an E3SAT instance by a new variable $z_{i, C}$. Add clauses and further auxiliary variables to the Exactly-One-3SAT instance you are constructing to ensure that if ℓ_{i} is True then $z_{i, C}$ is allowed to be either True or False but if ℓ_{i} is False then $z_{i, C}$ must be False.

Exercise 5: Cook Reductions

Part of this is found in Question 2.14 from the book.
A language L is Cook reducible to a language L^{\prime} if $L \in \mathbf{P}^{L^{\prime}}$. Here, $\mathbf{P}^{L^{\prime}}$ is the set of all languages that are decidable by polynomial-time oracle TMs with oracle access to L^{\prime}.

Recall, from the lectures, that $L \leq_{\mathbf{p}} L^{\prime}$ means L is polynomial-time Karp reducible to L^{\prime}. That is, there is a polynomial-time computable function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ such that for $x \in\{0,1\}^{*}$, $x \in L$ if and only if $f(x) \in L^{\prime}$.

- Show that the notion of Cook reductions is weaker than the notion of Karp reductions. That is, for two languages L, L^{\prime} prove that $L \leq_{\mathbf{p}} L^{\prime}$ implies L is Cook reducible to L^{\prime}.
- Say a language L^{\prime} is $\mathbf{N P}$-hard with respect to Cook reductions if every language $L \in \mathbf{N P}$ is Cook reducible to L^{\prime}. Show if there is some $L^{\prime} \in \mathbf{P}$ that is also NP-hard with respect to Cook reductions, then $\mathbf{P}=\mathbf{N P}$.
- Show that the notion of Cook reductions is transitive.
- Show that SAT is Cook reducible to Tautology (the language of all Boolean expressions that are true under every truth assignment).
- Show that if $\operatorname{SAT} \leq_{\mathbf{p}}$ Tautology then $\mathbf{N P}=\mathbf{c o}-\mathbf{N P}$.

Exercise 6: Quadratic Equations

Question 2.20 from the book.
Let QUADEQ be the language of all satisfiable systems of quadratic equations over $\mathbb{Z} / 2 \mathbb{Z}$ (integers modulo 2). That is, an instance has variables x_{1}, \ldots, x_{n} and constraints of the form

$$
\sum_{i, j} a_{i, j} \cdot x_{i} \cdot x_{j}=b
$$

for some given $a_{i, j} \in \mathbb{Z} / 2 \mathbb{Z}$ and some $b \in \mathbb{Z} / 2 \mathbb{Z}$.
For example, consider the following instance with variables $x_{1}, x_{2}, x_{3}, x_{4}$ and three constraints:

$$
\begin{aligned}
x_{1} \cdot x_{3}+x_{2} \cdot x_{2}+x_{3} \cdot x_{4} & =1 \\
x_{1} \cdot x_{1}+x_{3} \cdot x_{3} & =0 \\
x_{1} \cdot x_{4}+x_{1} \cdot x_{2}+x_{2} \cdot x_{3}+x_{2} \cdot x_{4} & =0
\end{aligned}
$$

Here, equality is modulo 2 : $1+1=0$ when working over $\mathbb{Z} / 2 \mathbb{Z}$. Note the left side of each expression has each term being a product of variables. There are no linear terms.
An instance is satisfiable if it is possible to assign values in $\mathbb{Z} / 2 \mathbb{Z}$ to the variables x_{1}, \ldots, x_{n} so all equalities hold. For example, the assignment $\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \rightarrow(1,0,1,0)$ satisfies the three quadratic equalities above.

Show QUADEQ is NP-complete.
Note: This is not just an artificial problem, it will be an important starting point when we talk about how to probabilistically verify certificates for languages in NP by only querying a constant number of bits.

Hint

Exploit the fact that $x_{i} \cdot x_{i}=x_{i}(\bmod 2)$.

Exercise 7: Very Sparse Languages

Question 2.10 from the book.

Call a language L unary if for each $n \geq 0, L \cap\{0,1\}^{n}$ is empty or only contains 1^{n}. Show that if some unary language is $\mathbf{N P}$-hard then $\mathbf{P}=\mathbf{N P}$.

Hint

Given a CNF instance ϕ, generate a set of pairs $\left\{\left(f\left(\psi_{i}\right), \psi_{i}\right)\right\}$ where each ψ_{i} is a CNF instance such that ϕ is satisfiable if and only if one of the ψ is satisfiable. Evolve this set by trying both ways to fix the assignment to a particular variable but be careful to make sure the set of pairs continues to have polynomial size throughout this process.

Exercise 8: Ladner's Function is Efficiently Computable

This is essentially Question 3.6.a) from the book. All logarithms are base-2 logarithms.
Recall the function H used in the proof of Ladner's theorem. That is, $H(n)$ is the minimum $i \leq \log \log n$ such that for every $x \in\{0,1\}^{*}$ with $|x| \leq \log n$, the computation of $M_{i}(x)$ halts within $i \cdot|x|^{i}$ steps and correctly decides if $x \in \mathrm{SAT}_{H}$. If there was no such i, we use $H(n)=\log \log n$. Here, we are sayings that M_{i} is M_{α} where $\alpha \in\{0,1\}^{*}$ is the binary encoding of i.

The use of $\log \log n$ is slightly informal as it is not defined for all natural numbers n and does not always produce an integer. For the sake of concreteness, use $g(n):=\lceil\log (\lceil\log (n+2)\rceil)\rceil$ which is computable in poly (n) time. You don't have to show this, just assume it. The proof of Ladner's theorem works with this concrete function ${ }^{2}$

Show that $H(n)$ can be computed in poly (n) time.
The book gives a really strong hint (copied below). Your job is just to put the pieces together by describing the algorithm with some care and providing a good accounting of the running time.

Hint from the book

The essential ingredients are (1) we need to recursively compute $H(i)$ on every $i \leq \log n$, (2) simulate $O(\log \log n)$ machines, each on various inputs of length $O(\log n)$ for at most $g(n) \cdot(\log n)^{g(n)}=$ $o(n)$ steps (you should prove this asymptotic bound), and (3) decide SAT on instances of size $O(\log n)$. One can design such an algorithm deciding $H(n)$ with running time $T(n)$ satisfying $T(n) \leq n \cdot T(\log n)+O\left(n^{2}\right)$, which simplifies to $O\left(n^{2}\right)$.

[^1]
[^0]: ${ }^{1}$ Open a 2 -tape example and then edit it yourself to start a 2 -tape project.

[^1]: ${ }^{2}$ Of course, if we are being picky we have to tweak a other things to make $H(n)$ precise, such as the problem that $i \cdot|x|^{i}=0$ for the empty string x but you don't have to do this.

