CMPUT 675: Approximation Algorithms

Lecture 1 (Date): Topic

Lecturer: Zachary Friggstad

Scribe: Your Name

Fall 2014

1.1 The Topic

Citing a reference [CW87].

A description list.

Part a: The first part.

Part b: The second part.

Part c: The last part.

An itemized list.

- Item #1.
- Item #2.

A numbered list.

- 1. First
- 2. Second

1.1.1 Statements of Results

Definition 1 Define your problem here.

Theorem 1 A theorem.

Lemma 1 A helpful lemma.

Proof. Proof of the lemma goes here.

Now we can prove Theorem 1.

Proof of Theorem 1. Follows from Lemma 1

1.2 Some Formulas and Algorithms

1.2.1 A Linear Program

Consider linear program (**TSP-LP**) below.

minimize:
$$\sum_{e} c(e) \cdot x_e$$
 (TSP-LP)

subject to: $x(\delta(S)) \ge 2$ for each cut $\emptyset \subseteq S \subseteq V$ (1.1)

$$x(\delta(v)) = 2$$
 for each vertex $v \in V$ (1.2)

$$x \ge 0$$

Constraints (1.1) are the *cut constraints* and Constraints (1.2) are the *degree constraints*.

1.2.2 Tips

Use $\log n$, not $\log n$.

 $V = \{v_1, v_2, \dots, v_n\}.$ Check out $\sum_{i=1}^n i$ vs. $\sum_{i=1}^n i.$

A displayed equation:

$$H_n = \sum_{k=1}^n \frac{1}{k} = \int_1^n \frac{dx}{x} + O(1) = \ln n + O(1)$$

A matrix:

$$\left(\begin{array}{rrrr} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ 0 & 0 & 1 \end{array}\right)$$

Problem names should look like this: SET COVER.

1.2.3 An Algorithm

Algorithm 1 Kruskal's MINIMUM SPANNING TREE Algorithm

Input: Undirected graph $\overline{G} = (V, E)$ with edge costs $c(e) \ge 0, e \in E$. **Output:** A minimum spanning tree of \overline{G} . $T \leftarrow \emptyset$ for each edge $e \in E$ in increasing order of cost c(e) do if $T \cup \{e\}$ does not contain a cycle then $T \leftarrow T \cup \{e\}$ end if end for return T

References

- CW87 D. COPPERSMITH and S. WINOGRAD, Matrix multiplication via arithmetic progressions, *Proceedings of the 19th ACM Symposium on Theory of Computing*, 1987, pp. 1–6.
 - S69 V. STRASSEN, Gaussian Elimination Is Not Optimal, Numerische Mathematik 13, 1969, pp. 354–356.
 - P84 V. PAN, *How To Multiply Matrices Faster*, Springer-Verlag, Lecture Notes in Computer Science Vol. 179, 1984.