
CMPUT 675: Approximation Algorithms Fall 2014

Lecture 1 (Date): Topic
Lecturer: Zachary Friggstad Scribe: Your Name

1.1 The Topic

Citing a reference [CW87].

A description list.

Part a: The first part.

Part b: The second part.

Part c: The last part.

An itemized list.

• Item #1.

• Item #2.

A numbered list.

1. First

2. Second

1.1.1 Statements of Results

Definition 1 Define your problem here.

Theorem 1 A theorem.

Lemma 1 A helpful lemma.

Proof. Proof of the lemma goes here.

Now we can prove Theorem 1.

Proof of Theorem 1. Follows from Lemma 1
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1.2 Some Formulas and Algorithms

1.2.1 A Linear Program

Consider linear program (TSP-LP) below.

minimize:
∑
e

c(e) · xe (TSP-LP)

subject to: x(δ(S)) ≥ 2 for each cut ∅ ( S ( V (1.1)

x(δ(v)) = 2 for each vertex v ∈ V (1.2)

x ≥ 0

Constraints (1.1) are the cut constraints and Constraints (1.2) are the degree constraints.

1.2.2 Tips

Use log n, not log n.

V = {v1, v2, . . . , vn}.

Check out
∑n

i=1 i vs.

n∑
i=1

i.

A displayed equation:

Hn =

n∑
k=1

1

k
=

∫ n

1

dx

x
+O(1) = lnn+O(1)

A matrix:  x1 y1 z1
x2 y2 z2
0 0 1


Problem names should look like this: Set Cover.

1.2.3 An Algorithm

Algorithm 1 Kruskal’s Minimum Spanning Tree Algorithm

Input: Undirected graph G = (V,E) with edge costs c(e) ≥ 0, e ∈ E.
Output: A minimum spanning tree of G.

T ← ∅
for each edge e ∈ E in increasing order of cost c(e) do

if T ∪ {e} does not contain a cycle then
T ← T ∪ {e}

end if
end for
return T
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