1.1 The Topic

Citing a reference [CW87].
A description list.

Part a: The first part.
Part b: The second part.
Part c: The last part.

An itemized list.

- Item \#1.
- Item \#2.

A numbered list.

1. First
2. Second

1.1.1 Statements of Results

Definition 1 Define your problem here.

Theorem 1 A theorem.

Lemma 1 helpful lemma.

Proof. Proof of the lemma goes here.
Now we can prove Theorem 1.
Proof of Theorem 1. Follows from Lemma 1

1.2 Some Formulas and Algorithms

1.2.1 A Linear Program

Consider linear program (TSP-LP) below.

$$
\begin{align*}
\text { minimize: } & \sum_{e} c(e) \cdot x_{e} \tag{TSP-LP}\\
\text { subject to: } & x(\delta(S)) \geq 2 \quad \text { for each cut } \emptyset \subsetneq S \subsetneq V \tag{1.1}\\
& x(\delta(v))=2 \quad \text { for each vertex } v \in V \tag{1.2}\\
& x \geq 0
\end{align*}
$$

Constraints (1.1) are the cut constraints and Constraints (1.2) are the degree constraints.

1.2.2 Tips

Use $\log n$, not $\log n$.
$V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$.
Check out $\sum_{i=1}^{n} i$ vs. $\sum_{i=1}^{n} i$.
A displayed equation:

$$
H_{n}=\sum_{k=1}^{n} \frac{1}{k}=\int_{1}^{n} \frac{d x}{x}+O(1)=\ln n+O(1)
$$

A matrix:

$$
\left(\begin{array}{rrr}
x_{1} & y_{1} & z_{1} \\
x_{2} & y_{2} & z_{2} \\
0 & 0 & 1
\end{array}\right)
$$

Problem names should look like this: Set Cover.

1.2.3 An Algorithm

```
Algorithm 1 Kruskal's Minimum Spanning Tree Algorithm
Input: Undirected graph \(G=(V, E)\) with edge costs \(c(e) \geq 0, e \in E\).
Output: A minimum spanning tree of \(G\).
    \(T \leftarrow \emptyset\)
    for each edge \(e \in E\) in increasing order of \(\operatorname{cost} c(e)\) do
        if \(T \cup\{e\}\) does not contain a cycle then
            \(T \leftarrow T \cup\{e\}\)
        end if
    end for
    return \(T\)
```


References

CW87 D. Coppersmith and S. Winograd, Matrix multiplication via arithmetic progressions, Proceedings of the 19th ACM Symposium on Theory of Computing, 1987, pp. 1-6.

S69 V. Strassen, Gaussian Elimination Is Not Optimal, Numerische Mathematik 13, 1969, pp. 354-356.
P84 V. Pan, How To Multiply Matrices Faster, Springer-Verlag, Lecture Notes in Computer Science Vol. 179, 1984.

