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12.1 Chernoff Bounds

Theorem 1 Let X1, . . . , Xn be independent {0, 1} random variables X1, . . . , Xn. Let X =
∑n
i=1Xi. Then for

any δ > 0 and any U ≥ E[X]:

Pr[X ≥ (1 + δ) · U ] <

(
eδ

(1 + δ)1+δ

)U
.

If 0 < δ ≤ 1:

Pr[X ≥ (1 + δ) · U ] < e−Uδ
2/3.

Proof. Say Pr[Xi = 1] = pi for each 1 ≤ i ≤ n.

Now to prove the first statement. Consider any value t > 0 (we will set it to a particular value later):

Pr[X > (1 + δ)U ] = Pr[et·X ≥ et·(1+δ)·U ] ≤ E[et·X]

et·(1+δ)·U

This holds because Pr[X ≥ a] ≤ E[X]
a , which is equivalent to Markov’s inequality.

Working with the numerator, we have

E[et·X ] = E

[
n∏
i=1

et·Xi

]
=

n∏
i=1

E[et·Xi ]

since the Xi are independent. Continuing with the argument,

n∏
i=1

E[et·Xi ] =

n∏
i=1

((1− pi) + pi · et) =

n∏
i=1

(1 + pi(e
t − 1)) ≤

n∏
i=1

epi(e
t−1)

since 1 + x ≤ ex for x ≥ 0. Further,

n∏
i=1

ePi(e
t−1) = e(e

t−1)
∑
i pi = e(e

t−1)E[X] ≤ e(e
t−1)·U

So far, we have show

Pr[X ≥ (1 + δ)U ] ≤ e(e
t−1)·U

et·(1+δ)·U
.

Setting t := ln(1 + δ) > 0 to minimize this expression, we see it is bounded by
(

eδ

(1+δ)(1+δ)

)U
.

When δ ≤ 1, we show (
eδ

(1 + δ)1+δ

)U
≤ e−U ·δ

2/3
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Note that it holds for δ = 0 and δ = 1. Take logarithms of both sides; note that the left-hand side is concave
in δ ∈ (0, 1) and the right-hand side is linear. Therefore, the inequality must hold over all δ ∈ [0, 1].

Other Chernoff-style bounds, such as those appearing in the text, are proven with a similar strategy: apply
Markov’s inequality to an exponential function in

∑
iXi and use independence.

12.2 Minimizing Congestion

In the Minimizing Congestion problem, we are given a directed graph G = (V,E), and (s1, t1), . . . , (sk, tk)
pairs of nodes. For each i from 1 to k, we must select a path Pi from si to ti. The goal is to minimize the
congestion of the paths found, where the congestion of a set of paths is the maximum number of times any
single edge appears in a path, i.e. minimize max

e∈E
(# i s.t. e ∈ Pi)

This problem is NP-Hard in general even for k = 2, as the problem of determining if there are edge-disjoint
paths P1, P2 connecting the respective pairs is NP-complete [FHW80].

In the special case where all si are identical, we can solve the problem efficiently as it is equivalent to maximum
flow. That is, add an auxiliary sink node t̄ to the graph and connect each ti to t̄ with a new capacity 1 edge.
Finally, find the smallest integer c such that if we set the remaining edge capacities to c then the graph supports
k units of flow from the common si node to t. Since the maximum flow in a flow network with integer capacities
can be taken to be integral, this corresponds to a collection of k paths connecting si to each of the sink nodes
{t1, . . . , tk}.

We now want to formulate Minimizing Congestion as a linear program. Let Pi be the set of all si− ti paths.
Note that the Pi may be exponential in the size of the input. For each i from 1 to k, and each path P ∈ Pi, let
xiP be a variable indicating pair i uses path P . An LP formulation is as follows:

minimize : W

subject to :

k∑
i=1

∑
P∈Pi s.t. e∈P

xip ≤ W for each edge e ∈ E

∑
P∈Pi

xiP = 1 for each 1 ≤ i ≤ k

W ≥ 1

x ≥ 0

The first set of constraints ensures that W is not less than the congestion of the solution. The second set ensures
that exactly one path between each si − ti path is chosen. The constraint W ≥ 1 is necessary, as otherwise the
integrality gap can be as bad as n even when k = 1: consider the following instance.

V = {v1, . . . , vn}, E = {(v1, vi), (vi, vn) : 2 ≤ i ≤ n− 1}, (s1, t1) = (v1, vn)

Certainly OPT = 1 but the LP can get away by selecting each of the paths {(v1, vi), (vi, vn)) to the extent of
1/(n− 2) and setting W = 1/(n− 2).

This formulation may have size exponential in the size of the input as there can be exponentially many si − ti
paths. However, there is an equivalent LP with polynomial size (in the sense that there is a natural correspon-
dence between their LP solutions). This will be an assignment question.
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We can use this LP to create an approximation algorithm for Minimizing Congestion. Note that the con-
straints x ≥ 0 and

∑
P∈Pi x

i
P = 1 suggest a natural probability distribution over the paths P ∈ Pi for each i.

The algorithm simply samples from this distribution for each i to get the required paths.

Algorithm 1 Randomized Rounding for Minimizing Congestion

Solve the LP, and let (x∗,W ∗) be an optimal solution.
Independently, for each i from 1 to k, randomly sample one path from Pi from the distribution given by

Pr[P ∈ Pi selected] = x∗ip .

end

Consider the following {0, 1} random variables. For each e ∈ E, 1 ≤ i ≤ k let Y ie indicate the event that the
path chosen for pair i uses edge e. For each 1 ≤ i ≤ k and each P ∈ Pi, let ZiP be the random variable that is
1 if path P was chosen to connect pair i. For e ∈ E, let Ye denote the congestion of e.

Thus, we have Ye =
∑k
i=1 Y

i
e for each e ∈ E and we also have Y ie =

∑
P∈Pi Z

i
P for each 1 ≤ i ≤ k and each

e ∈ E. Finally, note that the maximum congestion on any edge is maxe∈E Ye.

Lemma 1 For any edge e ∈ E, Pr[Ye > 18 · ln(n) ·W ∗] ≤ 1
n3

Proof. Note that:

E[Ye] = E

[∑
i

∑
P∈Pi s.t. e∈P

Zip

]
=

∑
i

∑
P∈Pi s.t. e∈P

E[Zip]

=
∑
i

∑
P∈Pi s.t. e∈P

x∗ip

≤ W ∗

We now use a Chernoff bound. Note that for this edge e, the variables Y 1
e , . . . , Y

k
e are {0, 1} random variables.

Furthermore, they are independent because we samples the path for each pair independently. Set U = 9 · ln(n) ·
W ∗, and δ = 1.

Pr[Ye ≥ (1 + δ) · U ] ≤ e−U ·δ
2/3

= e−3·ln(n)·W
∗

(Definitions of U and δ.)

= n−3·W
∗

≤ 1/n3 (Since W ∗ ≥ 1.)

Now we can prove the main result for this algorithm. When we say “with high probability”, we mean with
probability that approaches 1 as the size of the instance grows.

Theorem 2 With high probability, the congestion of this solution is ≤ 18 · ln(n) ·W ∗.

Proof. Continuing from the lemma, by the union bound, we have:

Pr[Ye > 18 · ln(n) ·W ∗ for some e ∈ E] ≤
∑
e∈E

Pr[Ye > 18 · ln(n) ·W ∗]

≤ |E|/n3
≤ 1/n (|E| ≤ n2)
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That is, the maximum congestion is at most 18 · lnn ·W ∗ with probability at least 1− 1/n.

12.2.1 A Tighter Bound

We used the simpler form of the Chernoff bound for simplicity. In fact, we can show that the maximum
congestion is in fact O(log n/ log log n) with high probability by using the sharper form of the Chernoff bound:

Pr[X ≥ (1 + δ) · U ] <
(

eδ

(1+δ)1+δ

)U
.

To see this, set U = W ∗ and δ = 5 logn
log logn − 1. For large enough n, working through the calculations shows

the probability that Ye > 5 logn
log lognW

∗ is small enough so that taking a union bound over all edges shows the

maximum congestion is at most 5 logn
log lognW

∗ with high probability.

This rounding algorithm is due to Raghavan and Thompson [RT87] who were the first to introduce the idea of
randomized rounding of linear programs. Interestingly, this algorithm is essentially the best possible. Unless
NP ⊆ ZPTIME(nO(log logn) there is no o(log n/ log log n)-approximation for Minimizing Congestion in di-
rected graphs [C+07]. In undirected graphs, the best lower bound is currently Ω(log log n/ log log log n) [AZ05].

This is a stronger assumption than P 6= NP and asserts there is no randomized algorithms that can decide,
say, SAT in expected running time nO(log logn). That is, such algorithms never return an incorrect answer, but
the running time is a random variable that is quasi-polynomial in expectation. This is stronger than saying
P 6= NP, but it is still an open problem and many would find it surprising if SAT could be decided with such
an algorithm.
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