
CMPUT 675: Approximation Algorithms Fall 2014

Lecture 11 (Sep 26): MAX SAT and Random Variables
Lecturer: Zachary Friggstad Scribe: Antonio Carlos Salzvedel Furtado Junior

11.1 MAX SAT

In the previous lecture, we defined the MAX SAT problem. We used the following LP relaxation, where saying
xi ∈ C means literal xi appears in C and saying x̄i ∈ C means literal x̄i appears in C.

maximize :
∑
C

yC

subject to : yC ≤
∑
xi∈C

zi +
∑
x̄i∈C

(1− zi) for each clause C

yC , zi ∈ [0, 1] for each clause C and each variable xi

We considered the following simple randomized algorithm and proved Claim 1.

Algorithm 1 Randomized Rounding

Solve the LP to get an optimal solution (y∗, z∗).
Independently for each i, set

xi =

{
True with probability z∗i
False with probability 1− z∗i

Claim 1 For any clause C with, say, k literals,

Pr[C is satisfied ] ≥

[
1−

(
1− 1

k

)k]
· yc ≥

(
1− 1

e

)
· yc.

Now consider the following simple alternative algorithm.

Algorithm 2 Flipping Coins

Independently for each i, set

xi =

{
True with probability 1

2
False with probability 1

2

Claim 2 For each clause C with, say, k literals,

Pr[C is satisfied ] = 1− 1

2k
.

11-1



11-2 Lecture 11: MAX SAT and Random Variables

Proof. Simply put, each literal in C is false with probability exactly 1/2. Since the xi values are sampled
independently, C is not satisfied with probability 1/2k.

This shows that Algorithm 2 is a 1/2-approximation for this problem since each clause has k ≥ 1 literals.
Therefore, in expectation we satisfy at least half of the clauses. This is tight; consider the MAX SAT instance
with a single clause C = (x1).

Observe that the randomized rounding algorithm (Algorithm 1) favours small clauses while the algorithm that
flips unbiased coins (Algorithm 2) favours large clauses. We can exploit this fact to devise an even better
algorithm.

Here is the high level idea. The functions g(k) = 1− (1− 1/k)k and h(k) = 1− 1/2k are, respectively, bounded
by at least 1− 1/e and 1/2 for positive integers k. However, their “average” (g(k) + f(k))/2 is in fact bounded
by at least 3/4 for every positive integer k. So, if we tried both rounding techniques then on average (between
the two rounding algorithms), a clause should be satisfied with probability at least 3/4 · y∗C .

Algorithm 3 Best of both worlds.

run

{
Algorithm 1 with probability 1

2
Algorithm 2 with probability 1

2

Lemma 1 For any clause C, Pr[C is satisfied] ≥ 3
4 · y

∗
c

Proof.

Pr[C is satisfied] = Pr[Run Algorithm 1] · Pr[C is satisfied|Algorithm 1 is run] +

Pr[Run Algorithm 2] · Pr[C is satisfied|Algorithm 2 is run]

=
1

2
· Pr[C is satisfied|Algorithm 1 is run] +

1

2
· Pr[C is satisfied|Algorithm 2 is run]

≥ 1

2
·

(
1−

(
1− 1

k

)k)
· y∗c +

1

2
·
(

1− 1

2k

)
· y∗C

=
g(k) + h(k)

2
· y∗C

where g(k) and h(k) are defined as above (just before the description of Algorithm 3). Note that while Algorithm
2 does not use an LP solution, it is still valid to say that it satisfies a clause C of length k with probability at
least (1− 1/2k) · y∗C .

Let f(k) = (g(k)+h(k))/2. It is straightforward to verify f(1) = f(2) = 3/4. For k ≥ 3, we have g(k) ≥ 1−1/e
and h(k) ≥ 7/8 so

f(k) ≥ 1− 1/e+ 7/8

2
≈ 0.753 > 3/4.

That is, for every k ≥ 1 we have f(k) ≥ 3/4, meaning clause C is satisfied with probability at least 3/4 · y∗C .

By Lemma 1, E[# clauses satisfied] ≥ 3
4 ·OPTLP .

The tightness of this bound can be demonstrated through the following example:

(x1 ∨ x2), (x1 ∨ x̄2), (x̄1 ∨ x2), (x̄1 ∨ x̄2)

Any truth assignment satisfies exactly three clauses so the optimum integer solution is 3. However, setting
z1 = z2 = 1/2 and yC = 1 for every clause C is a feasible LP solution with value 4, so OPT/OPTLP = 3/4.



Lecture 11: MAX SAT and Random Variables 11-3

11.1.1 Other Progress

The current best approximation for MAX SAT is a ≈ 0.7968-approximation [ABZ05] and uses a tool called
semidefinite programming, a generalization of linear programming that we can still solve in polynomial time.
We will cover this tool later in the course.

The problem MAX kSAT is the restriction of MAX SAT to instances where each clause involves exactly k
literals (from distinct variables). Two particularly interesting versions are MAX 2SAT and MAX 3SAT. For
MAX 3SAT, the random coins algorithm (Algorithm 2) provides a 7/8-approximation. Note that this is an
oblivious algorithm that does not even look at the clauses! Surprisingly, this is the best possible.

Theorem 1 ([H01]) Unless P = NP, there is no c-approximation for MAX 3SAT for any constant c > 7/8.

MAX 2SAT is also interesting. The decision problem 3SAT is NP-complete, but the decision problem 2SAT
is in fact polynomial time solvable. However, MAX 2SAT is NP-hard; if we cannot satisfy all clauses then it is
still hard to determine the maximum number that can be satisfied. This should not be too surprising, consider
the following analogous situation. We can efficiently determine if a given set of linear equations can be satisfied
using Gaussian elimination. However, if they cannot all be satisfied then it is not at all clear how to satisfy “the
most” from this method.

Using either Algorithm 1 or 2 on MAX 2SAT still only results in a 3/4-approximation. It is natural to wonder
if this is the best we can do, as was the case with MAX 3SAT. The answer is no; we can do better using
semidefinite programming. We may see this algorithm later in the course. Will certainly see a similar algorithm
for a problem closely related to MAX 2SAT.

11.2 Random Variables

We briefly recalled a few definitions and basic facts about random variables in the lecture. Most of the proof
were omitted from the lecture, but they are included here for the curious.

Let X be a discrete random variable. In particular, for every real number a, there is some value Pr[X = a] that
says what is the total probability of all events where X takes value a. These values satisfy:

Pr[X = a] ≥ 0 for all values a ∈ R,
∑
a∈R

Pr[X = a] = 1.

Saying that X is discrete means Pr[X = a] > 0 for only finitely (or countably) many values a. Most every time
we use random variables in this course, there are only finitely many possible outcomes in the probability space
so the random variables will be discrete.

For example, Algorithm 1 defines a distribution over truth assignments to the variables. One random variable
could be the number of satisfied clauses. Call this random variable X. Claim 1 says that on average, the value
of X is at least (1−1/e) ·OPTLP. Note that Pr[X = a] can only be positive for integers a from 0 to the number
of clauses.

What, precisely, does the expected value of X mean? It is simple.

Definition 1 E[X] =
∑
a a · Pr[X = a]

Again, this should be read as the average value of X, where average is weighted by the probability distribution.

One subtle but powerful fact is the following.



11-4 Lecture 11: MAX SAT and Random Variables

Proposition 1 There is some outcome such that X takes value ≥ E[X]. Similarly, there is some outcome such
that X takes value ≤ E[X].

Proof. Suppose the only values a with Pr[X = a] > 0 satisfy a < E[X]. Then

E[X] =
∑
a

a · Pr[X = a] <
∑
a

E[X] · Pr[X = a] = E[X] ·
∑
a

Pr[X = a] = E[X].

This is impossible. The second statement is similar.

For example, while the randomized algorithm Algorithm 3 does not guarantee at least 3/4 · OPTLP clauses
are satisfied, the simple fact that this is a bound on the expected number of satisfied clauses means that
there must exist some truth assignment satisfying at least this many clauses. So, it constitutes a proof that
OPT ≥ 3/4 ·OPTLP.

We can construct new random variables from old ones. For example, if X and Y are random variables then so
to is X + Y . It is the random variable that takes the value of X plus the value of Y on each outcome.

Proposition 2 (Linearity of Expectation) For two random variables X,Y , over the same probability space,
we have

E[X + Y ] = E[X] + E[Y ].

Furthermore, for a random variable X and a constant α we have

E[αX] = αE[X].

Proof. For the first statement:

E[X + Y ] =
∑
a,b∈R

(a+ b) · Pr[X = a and Y = b]

=

∑
a,b

a · Pr[X = a and Y = b]

+

∑
a,b

b · Pr[X = a and Y = b]


=

∑
a

a · Pr[X = a] +
∑
b

b · Pr[X = b]

= E[X]

For the second statement:

E[αX] =
∑
a

α · a · Pr[X = a] = α ·
∑
a

a · Pr[X = a] = α · E[X].

The first equality is because the random variable αX takes value α · a exactly when the random variable X
takes the value a (assuming α 6= 0, if α = 0 then everything is 0 and the proof is trivial).

It is important to know when random variables are independent. For example, we used this fact when proving
the performance guarantees of the above algorithms.

Definition 2 X and Y are independent if for all a, b ∈ R,

Pr[X = a] · Pr[Y = b] = Pr[X = a and Y = b]



Lecture 11: MAX SAT and Random Variables 11-5

Proposition 3 If X and Y are independent, then

E[X · Y ] = E[X] · E[Y ].

More generally, if X1, . . . , Xn are independent (meaning any two of them are independent) then E[
∏
iXi] =∏

i E[Xi].

Proof.

E[X · Y ] =
∑
a,b

a · b · Pr[X = a and Y = b]

=
∑
a,b

a · bPr[X = a] · Pr[Y = b]

=

(∑
a

a · Pr[X = a]

)
·

(∑
b

b · Pr[Y = b]

)
= E[X] · E[Y ].

The second statement follows using this argument in an inductive fashion, along with the simple observation
that the two random variables

∏n−1
i=1 Xi and Xn are also independent.

Say that a random variable is nonnegative if Pr[X = a] > 0 only for a ≥ 0.

Theorem 2 (Markov’s Inequality) If X is a nonnegative random variable, then for any α > 0 we have

Pr[X ≥ α · E[X]] ≤ 1

α
.

Equivalently,

Pr[X ≥ α] ≤ E[X]

α
.

Proof. The first statement follows immediately from the second statement. To see the first,

E[X] =
∑
a≥α

a · Pr[X = a] +
∑

0≤a<α

a · Pr[X = a]

≥
∑
a≥α

α · Pr[X = a] + 0

= α · Pr[X ≥ α].

We say that X is a {0, 1} random variable if Pr[X = a] > 0 only for a ∈ {0, 1}. For instance, a {0, 1} random
variable can “signal” if a certain event occurs. Sometimes, we identify {0, 1} random variables with the property
itself.

For example, in the MAX SAT problem we implicitly used a {0, 1} random variable for each clause C to signal
when it was satisfied by the assignment. That is, the event “C is satisfied” can also be viewed as a {0, 1} random
variable that is 1 precisely when C is satisfied.

Sometimes we want to avoid a collection of bad events that may not be independent. The following bound is
near trivial but it is quite useful in some cases (e.g. next lecture). It says that the probability that some bad
event happens is upper bounded by the sum of the individual probabilities of the bad events.



11-6 Lecture 11: MAX SAT and Random Variables

Theorem 3 (Union Bound) Consider any collection X1, X2, ..., Xn of {0,1} random variables. Then

Pr[Xi = 1 for some 1 ≤ i ≤ n] ≤
n∑
i=1

Pr[Xi = 1].

Proof. By induction. For n = 2 we have

Pr[X1 = 1 or X2 = 1] = Pr[X1 = 1] + Pr[X2 = 1]− Pr[X1 = 1 and X2 = 1] ≤ Pr[X1 = 1] + Pr[X2 = 1].

The first equality uses the principle of inclusion/exclusion.

For general n,

Pr[Xj = 1 for some 1 ≤ j ≤ n] ≤ Pr[Xi = 1 for some 1 ≤ i ≤ n− 1] + Pr[Xn = 1] ≤
n∑
i=1

Pr[Xi = 1]

The first inequality uses the fact that the union bound is true for 2 random variables and the last follows by
induction on first n− 1 random variables.

Finally, we state one of the so-called Chernoff Bounds. It asserts that for independent {0, 1} random variables
that the probability of deviating from the expectation decreases exponentially with the deviation. It is a much
sharper bound than Markov’s inequality, but it requires additional assumptions on the random variables. In
fact, it’s proof (next lecture) involves using Markov’s inequality in a clever way.

Theorem 4 (Chernoff Bound) Let X1, . . . , Xn be independent {0, 1} random variables. Then for all δ > 0
and all U ≥ E[

∑
iXi],

Pr

[∑
i

Xi > (1 + δ) · U

]
≤
(

eδ

(1 + δ)1+δ

)U
.

If δ ≤ 1, the latter quantity is bounded by ≤ e−U ·δ2/3.

There are similar bounds on the “lower tail” of the distribution (i.e. bounds on Pr[
∑
iXi < (1 − δ) · L] for

L ≤ E[
∑
iXi]). They can be found, for example, in the Williamson and Shmoys text.

For a concrete example, consider n unbiased, independent random “coins”. That is, each Xi is a {0, 1} random
variable with Pr[Xi = 0] = Pr[Xi = 1] = 1/2. Then E[

∑
iXi] = n/2. Consider Pr[

∑
iXi >

2
3 · n]. Using

Markov’s inequality, the best we can say is that this is at most 3/4.

However, using this Chernoff bound with U = E[
∑
iXi] and δ = 1/3 we can bound this probability by e−n/54

(using the latter bound for δ ≤ 1) which is a much tighter bound for large enough n. Using the first bound gives
something slightly sharper: the probability is at most e−n/40 (roughly). Even though the first bound is more
cumbersome to deal with, in some cases we can use it to get an asymptotically better bound when analyzing
approximation algorithms.

11.2.1 Extensions of MAX SAT

Consider the following slight generalization of MAX SAT. The input is the same except each clause C now has
a value vC ≥ 0. The goal is to satisfy the maximum total value of clauses.



Lecture 11: MAX SAT and Random Variables 11-7

Consider the LP relaxation that is identical to what we used, except the objective function is

maximize :
∑
C

vC · yC .

Running Algorithm 1 on this instance yields the same approximation ratio.

That is, Claim 1 shows Pr[C is satisfied]y∗C ≥ (1 − 1/e) · y∗C . Let YC be a {0, 1} random variable that signals
when clause C is satisfied. By linearity of expectation, the expected total value of satisfied clauses is bounded
as:

E

[∑
C

vC · YC

]
=
∑
C

vC · E[YC ] =
∑
C

vC · Pr[C is satisfied] ≥ (1− 1/e) ·
∑
C

vC · y∗c = (1− 1/e) ·OPTLP.

Essentially the same arguments also show that the performance guarantees of Algorithms 2 and 3 extend to
this weighted generalization.

References

ABZ05 A. Avidor, I. Berkovitch, and U. Zwick, Improved approximation algorithms for max nae-sat and max sat,
In Proceedings of Workshop on Approximation and Online Algorithms, 2005.

H01 J. H̊astad, Some optimal inapproximability results, Journal of the ACM, 48(4):798–859, 2001.


