
CMPUT 675: Approximation Algorithms Fall 2014

Lecture 10 (Sep 24): Knapsack and MAX SAT
Lecturer: Zachary Friggstad Scribe: Nikos Fasarakis-Hilliard

10.1 LP relaxation for the Knapsack Problem

We formulate the Knapsack problem as an integer program and consider the quality of its LP relaxation. The
Knapsack problem was previously introduced in Lecture 6.

Definition 1 In the Knapsack problem, we are given a set of items, I = {1, . . . , n}, each with a weight wi ≥ 0,
and a value vi ≥ 0. We are also given a weight capacity C ≥ 0. The goal is to find a maximum-value subset
X ⊆ I with

∑
i∈X wi ≤ C.

We can formulate the problem as the following integer program, in which variable xi ∈ {0, 1} for each i ∈ I,
indicates whether item i is chosen to be in the solution or not:

maximize:
∑
i∈I

vixi (KP-IP)

subject to:
∑
i∈I

wixi ≤ C, (10.1)

xi ∈ {0, 1}, for each i ∈ I. (10.2)

Constraint (10.1) ensures the total weight does not exceed the capacity and constraints (10.2) restrict variables
xi to be binary. We obtain a linear programming relaxation for problem KP-IP by replacing the constraints
xi ∈ {0, 1} with linear constraints 0 ≤ xi ≤ 1, for each i ∈ I:

maximize:
∑
i∈I

vixi (KP-LP)

subject to:
∑
i∈I

wixi ≤ C, (10.3)

xi ∈ [0, 1], for each i ∈ I. (10.4)

This is a relaxation of problem KP-IP in the sense that the set of feasible solutions of problem KP-LP is a
superset of the feasible solutions to problem KP-IP.

The integrality gap of KP-LP can be very bad. For example, suppose the Knapsack instance consisted of a
single item I = {i} with vi = wi = 2 for some large value D. Furthermore, suppose the capacity C was only 1.
The the optimum integer solution is 0 since nothing fits, yet the optimum LP solution has xi = 1/2 with value
vi/2 = 1.

The problem is that i did not fit on its own. We will discard such items and now assume wi ≤ C for each item
i. Clearly the optimum integer solution is the same since none of the discarded items fit on their own. We will
show the integrality gap is at least 1/2 under this assumption. There are quite a few ways to do this; we will
use the properties of extreme points.

10-1

10-2 Lecture 10: Knapsack and MAX SAT

Extreme point characterization

In Lecture 9 it was shown that there is an optimum solution that is also an extreme point for any linear program
that included all nonegativity constraints x ≥ 0. So, let x∗ be an optimum solution that is also an extreme
point and let A[x∗] be the matrix of tight constraints. Also recall that we saw that the rank of A[x∗] is equal
to the number of variables. In this case, A[x∗] = n.

Let A = {i ∈ I : x∗i = 1} denote the set of items that are “fully selected” by x∗ B = {i ∈ I : 0 < x∗i < 1} denote
the set of items that are “fractionally selected” by x∗.

In fact, B is a very small set.

Claim 1 |B| ≤ 1

Proof. Since rank(A[x∗]) = n, then there are at least n tight constraints. Therefore, there are at least n − 1
tight constraints of the form 0 ≤ x∗i or x∗i ≤ 1. Since we cannot have both x∗i = 0 and x∗i = 1 for any i ∈ I,
then for at least n− 1 items i, x∗i = 0 or x∗i = 1.

Theorem 1 Both A and B are feasible and at least one of them has value at least OPTLP/2.

Proof. To see A is feasible: ∑
i∈A

wi =
∑
i∈A

wix
∗
i ≤

∑
i∈I

wix
∗
i ≤ C. (10.5)

In addition, B is feasible by Claim 1: |B| ≤ 1 and wi ≤ C for each i ∈ I.

Also,

v(A) + v(B) ≥
∑
i∈A

vix
∗
i +

∑
i∈B

vix
∗
i

=
∑
i∈I

vix
∗
i = OPTLP. (10.6)

Therefore, either v(A) or v(B) is at least OPTLP/2.

In other words, if we have wi ≤ C for each item i ∈ I then the integrality gap of KP-LP is at least 1
2 .

10.2 The MAX SAT problem

In the maximum satisfiability problem (MAX SAT), we are given clauses C1, C2, . . . , Cm, each a disjunction
of literals over variables x1, x2, . . . , xn (e.g. x1 ∨ x̄2 ∨ x3). Each of the variables xi may be set to either true of
false. The objective of the problem is to find a truth assignment that satisfies the maximum possible number
of clauses.

To formulate MAX SAT as a linear program, we will use two sets of variables:

• zi ∈ {0, 1} ≡ “Is xi set to true?”

• yC ∈ {0, 1} ≡ “Is clause C satisfied?”

Lecture 10: Knapsack and MAX SAT 10-3

For a clause C, we say xi ∈ C to mean variable i appears positively as a literal in C and x̄i ∈ C to mean variable
i appears negatively in C. For example, if C = x1 ∨ x̄2 ∨ x3 then we say x1, x3 ∈ C and x̄2 ∈ C.

The following is an LP relaxation for MAX SAT:

maximize:
∑
C

yC (MS-LP)

subject to: yC ≤
∑

i:xi∈C
zi +

∑
i:x̄i∈C

(1− zi), for each clause C, (10.7)

zi, yC ∈ [0, 1], for each clause C and each variable xi (10.8)

This is a relaxation in the sense that in any {0, 1}-integer solution, we can only have yC = 1 (i.e. clause C
is satisfied) if at least one of the literals appearing in C is true under the corresponding {0, 1} assignment to
the zi variables. Conversely, any truth assignment to the xi variables corresponds to a {0, 1}-assignment to
the variables of MS-LP where we may set yC = 1 if and only if C under this truth assignment. In particular,
OPTLP ≥ OPT .

Algorithm

Let (y∗, z∗) be an optimum LP solution. Then:

Set xi to

{
TRUE with probability z∗i ,
FALSE with probability 1− z∗i .

We prove the following claim:

Claim 2 For any clause C with, say, k literals, Pr[C is satisfied] ≥
(

1−
(
1− 1

k

)k) · y∗C .

Proof. Instead of computing Pr[C is satisfied], we will compute Pr[C is not satisfied].

Pr[C is not satisfied]
(a)
=
∏
xi∈C

(1− z∗i)
∏
x̄i∈C

z∗i

(b)

≤

∑

xi∈C
(1− z∗i) +

∑
x̄i∈C

z∗i

k

k

=

k −
∑

xi∈C
z∗i +

∑
x̄i∈C

(1− z∗i)

k

k

(c)

≤
(

1− y∗C
k

)k

, (10.9)

where

(a) follows since xi’s are sampled independently.

(b) follows from the Arithmetic-Geometric Mean Inequality: for a1, . . . , ak ≥ 0 we have (
∏

i ai)
1/k ≤ 1

k ·
∑

i ai.

(c) follows from constraint (10.7) in MS-LP.

10-4 Lecture 10: Knapsack and MAX SAT

It follows that:

Pr[C is satisfied] = 1− Pr[C is not satisfied] ≥ 1−
(

1− y∗C
k

)k

. (10.10)

Now consider the function g(w) , 1−
(
1− w

k

)k
on [0, 1]. Then, it can be shown that g(w) is concave on [0, 1]

(recall k ≥ 1). For any function that is concave on [0, 1], the graph of g lies above the line segment joining two
points

(
0, g(0)

)
and

(
1, g(1)

)
, i.e.:

g
(
t) ≥ (1− t) · g(0) + t · g(1), for all t ∈ [0, 1]. (10.11)

For t = y∗C ∈ [0, 1], we see

Pr[C is satisfied] ≥ g(y∗C) ≥
(

1−
(
1− 1

k

)k) · y∗C . (10.12)

Theorem 2 The expected number of satisfied clauses is at least
(
1− 1

e

)
OPTLP ≥

(
1− 1

e

)
OPT.

Proof. First note that (1− 1/k)
k ≤ 1/e for any k ≥ 1 where e ≈ 2.718 is the base of the natural logarithm.

Then,

E[# satisfied clauses] =
∑
C

Pr[C is satisfied]

≥
(

1− 1

e

)
·
∑
C

y∗C
(
Follows from Claim 2 and (1− 1/k)k ≤ 1/e

)
=
(

1− 1

e

)
·OPTLP

≥
(

1− 1

e

)
·OPT. (10.13)

What we have just shown is that our randomized rounding algorithm finds, in expectation, at least (1− 1/e) ·
OPTLP > 0.632 · OPT clauses. This may be viewed as a slightly weak statement because this is only in
expectation (i.e. not guaranteed to happen).

Section 5.2 of the Williamson and Shmoys text presents a technique that can be adapted to “derandomize”
this algorithm. In particular, this yields a deterministic, polynomial time algorithm that rounds an optimal LP
solution to satisfy at least (1− 1/e) ·OPTLP constraints.

Even without this derandomization, this still provides a bound on the integrality gap. That is, since the expected
number of clauses is at least (1 − 1/e) · OPTLP, then there must be some solution that satisfies at least this
many clauses. At any rate, in this class we will be happy with randomized approximation algorithms that find
a solution whose expected cost or value is within some bound of the optimum.

Finally, note that this rounding algorithm favours small clauses. That is, 1 − (1 − 1/k)k is larger for small k.
Next lecture, we will see an alternative algorithm for MAX SAT that favours large clauses. The worst-case
ratio of this algorithm will only be 1/2, but running these two algorithms and taking the better of the two
solutions will be a 3/4-approximation, which is better than both 1− 1/e and 1/2.

