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6.1 The Set Cover Problem

Definition 1 In the Set Cover problem, we are given X, a set of items, a set S of subsets of X, and a cost
function c such that c(S) ≥ 0 for all S ∈ S. The goal is to find a minimum-cost set of sets C ⊆ S which covers
X (i.e. the union of all the sets in C is equal to X).

Algorithm 1 Greedy Set Cover Algorithm (Annotated with Marginal Costs)

Input: A set S of subsets of X, with c, a non-negative cost function on S
Output: A subset C of S which covers X.

C ← ∅
Y ← ∅
zi ← 0 for all i ∈ X
while Y 6= X do

Let S be the element of S minimizing c(S)
|S−Y | (note that this function gives the density of S)

zi ← c(S)
|S−Y | for all i ∈ S − Y

C ← C ∪ {S}
Y ← Y ∪ S

end while
return C

Note: recording the zi values in the loop has no effect on the output; they are only used in the analysis below.

Before proving the main result, we establish a claim first.

Claim 1 For each S ∈ S:
∑
i∈S

zi ≤ H|S| · c(S)

Proof. Let i1, i2, . . . , i|S| be the order the items of S were covered. Just before ij is covered, the density of S

(recall: density of S is equal to c(S)
|S−Y | ) is less than or equal to c(S)

|S|−j+1 since items ij , ij+1, . . . , i|S| were not yet

covered by C at this time. Since ij is covered by the minimum density set at this time, zij ≤
c(S)
|S|−j+1 . Therefore,

|S|∑
j=1

zj ≤ c(S) ·
|S|∑
j=1

1

|S| − j + 1
= c(S) ·H|S|.

Theorem 1 This in an Hk-approximation, where:
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1. k = max
S∈S
|S|

2. Hk =

k∑
a=1

1

a
= ln(k) +O(1)

Proof. Say C is returned by our algorithm and say C∗ is an optimal solution, with cost OPT .

Notice that each i ∈ X has zi assigned some value in the loop exactly once. Namely, in the iteration when i is
first covered. Also note that the total zi value assigned to items in a single loop is exactly the cost of the set S
that is added to C in that iteration.

We bound the cost of C as follows.

cost(C) =
∑
i∈X

zi · 1

≤
∑
i∈X

zi
∑

S∈C∗s.t.i∈S
1 (Since each item i is covered by C∗)

=
∑
S∈C∗

∑
i∈S

zi (Rearranging)

≤
∑
S∈C∗

H|S| · c(S) (By Claim 1)

≤ Hk ·OPT

If this analysis seems difficult to intuit, be assured that it will make more sense once we cover linear programming
duality. The analysis of the Hk approximation ratio of this greedy algorithm was first provided in [C79].

6.2 The Knapsack Problem

Definition 2 In the Knapsack problem, we are given a set of items, I = {1, . . . , n}, each with a weight,
wi ≥ 0, and a value, vi ≥ 0. We are also given a weight capacity, C ≥ 0. The goal is to find a maximum-value
subset X ⊆ I with

∑
i∈X wi ≤ C.

We want to prove the following:

Theorem 2 For all ε > 0, there is a (1− ε)-approximation for Knapsack which runs in time O(n3/ε).

Before proving this, we present an exact algorithm whose running time depends on the largest weight. This will
be used as a subroutine in our approximation algorithm.

Theorem 3 If all values vi are integers at most D, we can solve Knapsack in time O(n2 ·D).

Proof. We use dynamic programming. Note that OPT ≤ n ·D.
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For 0 ≤ i ≤ n, and an integer 0 ≤ p ≤ n ·D, let f(i, p) be the minimum weight of a subset of {1, . . . , i} that has
value p (∞ if no such subset exists). The optimum solution value is the largest p ≤ n ·D such that f(n, p) ≤ C.

The following recurrence allows us to calculation the f(i, p) values efficiently:

f(i, p) =


0 i = 0, p = 0
∞ i = 0, p 6= 0
min(f(i− 1, p), f(i− 1, p− vi) + wi) i 6= 0, vi ≤ p
f(i− 1, p) i 6= 0, vi > p

For example, if i 6= 0 and vi ≤ p then a minimum-weight set S ⊆ {1, . . . , i} with value = p either contains i or
it does not. The min in this step of the recurrence tries both possibilities and keeps the best answer.

Since there are O(n2 ·D) different pairs (i, p) with 0 ≤ i ≤ n and 0 ≤ p ≤ n ·D then we can calculate all f(i, p)
values using dynamic programming in O(n2 ·D) time.

Using standard dynamic programming techniques, we can use this recurrence to construct a set S with weight
≤ C and value OPT in O(n2 ·D) time.

Of course, since Knapsack is NP-hard we do not expect this algorithm can be used to efficiently solve all
instances. The instances of Knapsack that are produced in the known NP-hardness proofs have values that
are exponential in n. Still, we can use this algorithm to approximate the optimum solutions of any Knapsack
instance. The main idea is to scale the values so the largest is only polynomial in n and 1/ε and then round the
values down to the nearest integer. This is much like making a rough estimate of a grocery bill while shopping
by only adding the dollar values of the items you have in your cart.

This scaling and rounding will be done carefully to ensure that an optimum solution with the new values is a
near-optimum solution under the original values. We then use the dynamic programming algorithm described
in Theorem 3 on this scaled instance.

Algorithm 2 is our final approximation for Knapsack.

Algorithm 2 A (1− ε)-Approximation for Knapsack

Input: A set of items I, weights wi ≥ 0 and values vi ≥ 0 for i ∈ I, a capacity C ≥ 0, and a parameter ε > 0
Output: A subset S of I with total weight at most C

Discard any i with wi > C from I
δ ←M · ε/n where M = maxi∈I vi
Let v′i ← bvi/δc
Use the algorithm described by Theorem 3 on the instance with values v′i to find a set of items S
return S

Proof of Theorem 2. Let S∗ be the optimum solution for the original problem (the one with values vi).

Note the following facts:

• M ≤ OPT , because the item i ∈ I with largest value vi fits in the knapsack by itself.

• vi/δ − 1 ≤ v′i ≤ vi/δ for each item i ∈ I.

The last fact shows v′i ≤ vi/δ ≤M/δ ≤ n/ε. Therefore, the running time of the step that invokes the dynamic
programming algorithm described in Theorem 3 is O(n3/ε). The remaining steps clearly take less time, so the
overall running time is O(n3/ε).
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We conclude by bounding the value of the solution S found by Algorithm 2.∑
i∈S

vi ≥ δ ·
∑
i∈S

v′i

≥ δ ·
∑
i∈S∗

v′i (Since S is optimal for the instance with values v′i)

≥ δ ·
∑
i∈S∗

(vi
δ
− 1
)

=
∑
i∈S∗

vi − |S∗| · δ

≥ OPT − n · δ
= OPT −M · ε
≥ OPT −OPT · ε = (1− ε) ·OPT

Theorem 2 was first proved in [IK75]. Since then, quite a few fundamentally different algorithms for Knapsack
have been found that achieve this same approximation ratio. The Williamson and Shmoys text has a neat
exercise at the end of Chapter 3 on reducing the running time of this approximation to O(n2/ε).
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