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4.1 Traveling Salesman Problem

The following algorithm describes a 3
2 -approximation for the Traveling Salesman Problem, defined in the

previous lecture. The shortcutting step used by this algorithm is performed as described in the proof of Theorem
1 from Lecture 3. The algorithm is one of the oldest approximations, from Christofides in 1976 [C76].

Definition 1 Given a graph G = (V,E), a matching M is a subset of edges so each v ∈ V is the endpoint of
at most one edge in M . The matching M is said to be perfect if every vertex in v is an endpoint of some edge
in M , equivalently |M | = |V |/2.

We will use the following fact without proof.

Theorem 1 There is a polynomial-time algorithm that determines if a graph has a perfect matching. Fur-
thermore, if such a matching exists and if the edges have costs then we can also find a minimum-cost perfect
matching in polynomial time.

The main idea behind this improved approximation is that we can fix the odd-degree nodes in the minimum
spanning tree by being more clever than simply doubling every edge. Instead, we will just match them up in
the cheapest way possible.

Algorithm 1 Traveling Salesman 3
2 -approximation

Input: A metric on nodes V with costs c(u, v),u, v ∈ V .
Output: A Hamiltonian cycle H.

T ← a minimum spanning tree of the metric
D ← odd degree nodes in T
M ← minimum cost perfect matching of D
C ← Eulerian circuit of the graph (V, T +M) (the + means keep both copies of an edge if it lies in T and M)
shortcut C to get a Hamiltonian cycle H
return H

Theorem 2 Algorithm 1 is a 3
2 -approximation

Proof. First, note that T + M is an Eulerian graph since it is connected (as it contains T ) and clearly every
v ∈ V has even degree in T + M .

Let OPT denote the cost of an optimum solution.
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As we know that the shortcutting step will not increase the size of a Hamiltonian cycle, we can affirm that

cost(H) ≤ cost(C)
= cost(T ) + cost(M)

≤ OPT + cost(M).

The last inequality is justified because T is the cheapest spanning tree and the optimum solution, being a
Hamiltonian cycle, contains some spanning tree.

We need to demonstrate that the following is true:

cost(M) ≤ OPT

2
.

Let H∗ be an optimum solution, so cost(H)∗ = OPT .

Shortcut H∗ past nodes in V −D to get a cycle HD spanning D. Since shortcutting does not increase the cost,

cost(HD) ≤ cost(H∗) = OPT.

Say the cycle HD follows nodes v1, v2, . . . , v|D|, v1. Let M1 and M2 be the two perfect matchings on D obtained
by taking the edges of HD alternatively, such that

M1 = {(v1v2), (v3v4), ..., (v|D−1|v|D|)}

and
M2 = {(v2v3), (v4v5), ..., (v|D|v1)}

Then cost(M1) + cost(M2) = cost(HD) so

min(cost(M1), cost(M2)) ≤ cost(HD)

2
≤ OPT

2
.

Since M is the minimum-cost perfect matching of D, then

cost(M) ≤ min(cost(M1), cost(M2)) ≤ OPT

2
.

Thus, cost(H) ≤ 3
2 ·OPT
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