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24.1 Tree Metrics

We finish the discussion of the tree embedding algorithm in this lecture. The basic definitions are found in the
previous lectures’ notes. We recall the algorithm here.

Algorithm 1 Partitioning Scheme for the Tree Metric

Sample r0 uniformly from [1/2, 1). Set ri = 2i · r0 for 1 ≤ i ≤ ∆. (Recall that log2(∆) = dlog2(diam(V ))e)
Let π : V → V be a random permutation of V
C(log2(∆)) = {V }
for i from log(∆) down to 1 do
C(i− 1)← ∅
for each S ∈ C(i) do
S′ ← S
for each v ∈ V in order of π do
S∗ ← B(v, ri−1) ∩ S′
if S∗ 6= ∅ then
C(i− 1)← C(i− 1) ∪ {S∗}
S′ ← S′ − S∗
Add an edge with distance 2i connecting the vertices corresponding to S∗ and S

Note that for each level i, C(i) is a partition of V the leaves of the constructed tree. Furthermore, the leaf nodes
are the singleton sets in C(1) and we identify v ∈ V with the leaf node for set {v} ∈ C(1).

For any two u, v ∈ V , we say that their least common ancestor is at level i if there is some S ∈ C(i) such that
u, v ∈ S but u and v lie in different sets of C(i + 1). We prove the following lemma last class, which we are
restating for reference.

Lemma 1 For all pairs u, v ∈ V , d(u, v) ≤ T (u, v) ≤ 2i+2 where the least common ancestor of u and v is at
level i.

In this lecture, we complete the analysis of Algorithm 1 by proving the following.

Theorem 1 For any pair u, v ∈ V , E[T (u, v)] ≤ O(log n) · d(u, v)

From now on, we fix u and v. The following concepts will help us examine the expected stretch of (u, v).

Definition 1 For a vertex w ∈ V , say w settles u, v at level i if w is the first vertex (with respect to π) such
that B(ri−1, w) ∩ {u, v} 6= ∅.

Note that for each level i, there is exactly one vertex w that settles u, v at level i.
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Definition 2 For a vertex w ∈ V , w cuts u, v at level i if |B(ri−1, w) ∩ {u, v}| = 1.

In the following discussion, for a pair u, v ∈ V , we will use some {0, 1}-random variables:

• Siw = 1 if w settles u, v at level i.

• Xiw = 1 if w cuts u, v at level i.

Claim 1 If the least common ancestor of u and v is at level i, then there is some w ∈ V that both settles and
cuts u, v at level i (i.e. Siw = Xiw = 1).

Proof. Let w be the vertex such that Siw = 1. Suppose, without loss of generality, that u ∈ B(ri−1, w). If
v ∈ B(ri−1, w) as well then both u and v would be added to the same set in C(i− 1) which contradicts the fact
that i is the level of their least common ancestor. Therefore, v 6∈ B(ri−1, w) so Xiw = 1 as well.

Using these tools, we complete the proof of the main result.

Proof of Theorem 1. If the least common ancestor of u and v is at level i, then T (u, v) ≤ 2i+2 by Lemma 1.
By Claim 1, there is some w ∈ V such that Xiw = 1 and Siw = 1. Thus,

T (u, v) ≤
log2 ∆∑
i=1

∑
w∈V

2i+1 ·Xiw · Siw.

In other words, by Claim 1 the latter sum includes 2i+2 where i is the level of the least common ancestor of u
and v.

Therefore,

E[T (u, v)] ≤
log2 ∆∑
i=1

∑
w∈V

2i+1 · Pr[Xiw = Siw = 1]

≤
log2 ∆∑
i=1

∑
w∈V

2i+1 · Pr[Siw = 1|Xiw = 1] · Pr[Xiw = 1]. (24.1)

We simplify this sum in two ways. First, we will show that Pr[Siw = 1|Xiw = 1] is bounded by some value bw
that is independent of level. If so, then we can bound (24.1) by

E[T (u, v)] ≤
∑
w∈V

bw

log ∆∑
i=1

Pr[Xiw = 1]2i+2.

More explicitly:

Lemma 2 Pr[Siw = 1|Xiw = 1] ≤ bw for some constant that is independent of level where
∑

w∈V bw = Hn =
O(log n).

Proof. Sort V by distance to {u, v} i.e. V = {w1, w2, ..., wn} such that d(wj , {u, v}) ≤ d(wj+1, {u, v}).

Fix some wj . Given that Xiwj
= 1, then surely B(ri−1, wj)∩ {u, v} 6= ∅. But then B(ri−1, wj′)∩ {u, v} 6= ∅ for

every 1 ≤ j′ < j. So if wj both settles and cuts u, v at level i then π must order wj before wj′ , 1 ≤ j′ < j. The
probability that wj is ordered before each wj′ , j

′ < j is exactly 1/j.
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Note that this also true in the conditional distribution (conditioned on the event Xiwj
= 1) because the event

that wj is ordered before al wj′ is independent of the random choice of radius. Therefore,

bwj := Pr[Siwj = 1|Xiwj = 1] ≤ 1/j.

Finally, we also note that ∑
w∈V

bw =

n∑
j=1

bwj
=

n∑
j=1

1

j
= Hn.

Lemma 3 For any vertex w ∈ V ,
log ∆∑
i=1

Pr[Xiw = 1] · 2i+2 ≤ 16 · d(u, v).

Proof. We assume d(u,w) ≤ d(v, w), otherwise we can exchange the roles of u and v in the proof.

Observe Xiw = 1 if and only ri−1 = r02i−1 lies in the half-open interval [d(u,w), d(v, w)). Since r0 is sampled
uniformly from [ 1

2 , 1), then

Pr[Xiw = 1] =
|[2i−2, 2i−1) ∩ [d(u,w), d(v, w))|

|[2i−2, 2i−1]|
.

=
|[2i−2, 2i−1) ∩ [d(u,w), d(v, w))|

2i−2

Therefore,

Pr[Xiw = 1] · 2i+2 = 2i+2 · |[2
i−2, 2i−1) ∩ [d(u,w), d(v, w))|

2i−2

= 16 · |[2i−2, 2i−1) ∩ [d(u,w), d(v, w))|.

This shows
log ∆∑
i=1

Pr[Xiw = 1]2i+2 = 16

log ∆∑
i=1

|[2i−2, 2i−1) ∩ [d(u,w), d(v, w))|

The union of the disjoint intervals [2i−2, 2i−1) covers [0,∆), so the last sum is

16 · |[d(u,w), d(w, v))| = 16 · (d(w, v)− d(u,w)) ≤ 16 · d(u, v).

The last step is justified by the triangle inequality d(w, v) ≤ d(u, v) + d(u,w).

To wrap up, Lemma 2 allows us to bound (24.1) by
∑

w∈V bw
log ∆∑
i=1

Pr[Xiw = 1] · 2i+2. By Lemma 3, this is at

most
16 · d(u, v) ·

∑
w∈V

bw = 16 · d(u, v) ·Hn = O(log n) · d(u, v).

This is what we wanted to show.

This tree embedding algorithm was proven by Fakcharoenphol, Rao, and Talwar [FRT04].

An interesting related topic is the following. Given a (not necessarily metric or even complete) graph G = (V,E),
let d denote the shortest path metric of G. The goal here is to find a distribution over spanning trees T of G
such that E[T (u, v)] ≤ α · d(u, v) for the smallest possible α. Abraham, Bartal, and Neiman show a nearly
tight bound with α = O(log n · log log n · (log log log n)3) [ABN08] (nearly tight with the known lower bound of
Ω(log n)).
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