24.1 Tree Metrics

We finish the discussion of the tree embedding algorithm in this lecture. The basic definitions are found in the previous lectures' notes. We recall the algorithm here.

```
Algorithm 1 Partitioning Scheme for the Tree Metric
    Sample \(r_{0}\) uniformly from \([1 / 2,1)\). Set \(r_{i}=2^{i} \cdot r_{0}\) for \(1 \leq i \leq \Delta\). (Recall that \(\left.\log _{2}(\Delta)=\left\lceil\log _{2}(\operatorname{diam}(V))\right\rceil\right)\)
    Let \(\pi: V \rightarrow V\) be a random permutation of \(V\)
    \(\mathcal{C}\left(\log _{2}(\Delta)\right)=\{V\}\)
    for \(i\) from \(\log (\Delta)\) down to 1 do
        \(\mathcal{C}(i-1) \leftarrow \emptyset\)
        for each \(\mathcal{S} \in \mathcal{C}(i)\) do
            \(S^{\prime} \leftarrow S\)
            for each \(v \in V\) in order of \(\pi\) do
                \(S^{*} \leftarrow B\left(v, r_{i-1}\right) \cap S^{\prime}\)
            if \(S^{*} \neq \emptyset\) then
                \(\mathcal{C}(i-1) \leftarrow \mathcal{C}(i-1) \cup\left\{S^{*}\right\}\)
                    \(S^{\prime} \leftarrow S^{\prime}-S^{*}\)
                    Add an edge with distance \(2^{i}\) connecting the vertices corresponding to \(S^{*}\) and \(S\)
```

Note that for each level $i, \mathcal{C}(i)$ is a partition of V the leaves of the constructed tree. Furthermore, the leaf nodes are the singleton sets in $\mathcal{C}(1)$ and we identify $v \in V$ with the leaf node for set $\{v\} \in \mathcal{C}(1)$.

For any two $u, v \in V$, we say that their least common ancestor is at level i if there is some $S \in \mathcal{C}(i)$ such that $u, v \in S$ but u and v lie in different sets of $\mathcal{C}(i+1)$. We prove the following lemma last class, which we are restating for reference.

Lemma 1 For all pairs $u, v \in V, d(u, v) \leq T(u, v) \leq 2^{i+2}$ where the least common ancestor of u and v is at level i.

In this lecture, we complete the analysis of Algorithm 1 by proving the following.

Theorem 1 For any pair $u, v \in V, \mathrm{E}[T(u, v)] \leq O(\log n) \cdot d(u, v)$
From now on, we fix u and v. The following concepts will help us examine the expected stretch of (u, v).

Definition 1 For a vertex $w \in V$, say w settles u, v at level i if w is the first vertex (with respect to π) such that $B\left(r_{i-1}, w\right) \cap\{u, v\} \neq \emptyset$.

Note that for each level i, there is exactly one vertex w that settles u, v at level i.

Definition 2 For a vertex $w \in V, w$ cuts u, v at level if $\left|B\left(r_{i-1}, w\right) \cap\{u, v\}\right|=1$.

In the following discussion, for a pair $u, v \in V$, we will use some $\{0,1\}$-random variables:

- $\mathbf{S}_{i w}=1$ if w settles u, v at level i.
- $\mathbf{X}_{i w}=1$ if w cuts u, v at level i.

Claim 1 If the least common ancestor of u and v is at level i, then there is some $w \in V$ that both settles and cuts u, v at level i (i.e. $\mathbf{S}_{i w}=\mathbf{X}_{i w}=1$).

Proof. Let w be the vertex such that $\mathbf{S}_{i w}=1$. Suppose, without loss of generality, that $u \in B\left(r_{i-1}, w\right)$. If $v \in B\left(r_{i-1}, w\right)$ as well then both u and v would be added to the same set in $\mathcal{C}(i-1)$ which contradicts the fact that i is the level of their least common ancestor. Therefore, $v \notin B\left(r_{i-1}, w\right)$ so $\mathbf{X}_{i w}=1$ as well.

Using these tools, we complete the proof of the main result.
Proof of Theorem 1. If the least common ancestor of u and v is at level i, then $T(u, v) \leq 2^{i+2}$ by Lemma 1 . By Claim 1, there is some $w \in V$ such that $\mathbf{X}_{i w}=1$ and $\mathbf{S}_{i w}=1$. Thus,

$$
T(u, v) \leq \sum_{i=1}^{\log _{2} \Delta} \sum_{w \in V} 2^{i+1} \cdot \mathbf{X}_{i w} \cdot \mathbf{S}_{i w}
$$

In other words, by Claim 1 the latter sum includes 2^{i+2} where i is the level of the least common ancestor of u and v.

Therefore,

$$
\begin{align*}
\mathrm{E}[T(u, v)] & \leq \sum_{i=1}^{\log _{2} \Delta} \sum_{w \in V} 2^{i+1} \cdot \operatorname{Pr}\left[\mathbf{X}_{i w}=\mathbf{S}_{i w}=1\right] \\
& \leq \sum_{i=1}^{\log _{2} \Delta} \sum_{w \in V} 2^{i+1} \cdot \operatorname{Pr}\left[\mathbf{S}_{i w}=1 \mid \mathbf{X}_{i w}=1\right] \cdot \operatorname{Pr}\left[\mathbf{X}_{i w}=1\right] \tag{24.1}
\end{align*}
$$

We simplify this sum in two ways. First, we will show that $\operatorname{Pr}\left[\mathbf{S}_{i w}=1 \mid \mathbf{X}_{i w}=1\right]$ is bounded by some value b_{w} that is independent of level. If so, then we can bound (24.1) by

$$
\mathrm{E}[T(u, v)] \leq \sum_{w \in V} b_{w} \sum_{i=1}^{\log \Delta} \operatorname{Pr}\left[\mathbf{X}_{i w}=1\right] 2^{i+2}
$$

More explicitly:

Lemma $2 \operatorname{Pr}\left[\mathbf{S}_{i w}=1 \mid \mathbf{X}_{i w}=1\right] \leq b_{w}$ for some constant that is independent of level where $\sum_{w \in V} b_{w}=H_{n}=$ $O(\log n)$.

Proof. Sort V by distance to $\{u, v\}$ i.e. $V=\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ such that $d\left(w_{j},\{u, v\}\right) \leq d\left(w_{j+1},\{u, v\}\right)$.
Fix some w_{j}. Given that $\mathbf{X}_{i w_{j}}=1$, then surely $B\left(r_{i-1}, w_{j}\right) \cap\{u, v\} \neq \emptyset$. But then $B\left(r_{i-1}, w_{j^{\prime}}\right) \cap\{u, v\} \neq \emptyset$ for every $1 \leq j^{\prime}<j$. So if w_{j} both settles and cuts u, v at level i then π must order w_{j} before $w_{j^{\prime}}, 1 \leq j^{\prime}<j$. The probability that w_{j} is ordered before each $w_{j^{\prime}}, j^{\prime}<j$ is exactly $1 / j$.

Note that this also true in the conditional distribution (conditioned on the event $\mathbf{X}_{i w_{j}}=1$) because the event that w_{j} is ordered before al $w_{j^{\prime}}$ is independent of the random choice of radius. Therefore,

$$
b_{w_{j}}:=\operatorname{Pr}\left[\mathbf{S}_{i w_{j}}=1 \mid \mathbf{X}_{i w_{j}}=1\right] \leq 1 / j
$$

Finally, we also note that

$$
\sum_{w \in V} b_{w}=\sum_{j=1}^{n} b_{w_{j}}=\sum_{j=1}^{n} \frac{1}{j}=H_{n}
$$

Lemma 3 For any vertex $w \in V, \sum_{i=1}^{\log \Delta} \operatorname{Pr}\left[\mathbf{X}_{i w}=1\right] \cdot 2^{i+2} \leq 16 \cdot d(u, v)$.
Proof. We assume $d(u, w) \leq d(v, w)$, otherwise we can exchange the roles of u and v in the proof.
Observe $\mathbf{X}_{i w}=1$ if and only $r_{i-1}=r_{0} 2^{i-1}$ lies in the half-open interval $[d(u, w), d(v, w))$. Since r_{0} is sampled uniformly from $\left[\frac{1}{2}, 1\right)$, then

$$
\begin{aligned}
\operatorname{Pr}\left[\mathbf{X}_{i w}\right. & =1]=\frac{\left|\left[2^{i-2}, 2^{i-1}\right) \cap[d(u, w), d(v, w))\right|}{\left|\left[2^{i-2}, 2^{i-1}\right]\right|} \\
& =\frac{\left|\left[2^{i-2}, 2^{i-1}\right) \cap[d(u, w), d(v, w))\right|}{2^{i-2}}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\operatorname{Pr}\left[\mathbf{X}_{i w}=1\right] \cdot 2^{i+2} & =2^{i+2} \cdot \frac{\left|\left[2^{i-2}, 2^{i-1}\right) \cap[d(u, w), d(v, w))\right|}{2^{i-2}} \\
& =16 \cdot\left|\left[2^{i-2}, 2^{i-1}\right) \cap[d(u, w), d(v, w))\right|
\end{aligned}
$$

This shows

$$
\sum_{i=1}^{\log \Delta} \operatorname{Pr}\left[\mathbf{X}_{i w}=1\right] 2^{i+2}=16 \sum_{i=1}^{\log \Delta}\left|\left[2^{i-2}, 2^{i-1}\right) \cap[d(u, w), d(v, w))\right|
$$

The union of the disjoint intervals $\left[2^{i-2}, 2^{i-1}\right)$ covers $[0, \Delta)$, so the last sum is

$$
16 \cdot|[d(u, w), d(w, v))|=16 \cdot(d(w, v)-d(u, w)) \leq 16 \cdot d(u, v)
$$

The last step is justified by the triangle inequality $d(w, v) \leq d(u, v)+d(u, w)$.
To wrap up, Lemma 2 allows us to bound (24.1) by $\sum_{w \in V} b_{w} \sum_{i=1}^{\log \Delta} \operatorname{Pr}\left[\mathbf{X}_{i w}=1\right] \cdot 2^{i+2}$. By Lemma 3, this is at most

$$
16 \cdot d(u, v) \cdot \sum_{w \in V} b_{w}=16 \cdot d(u, v) \cdot H_{n}=O(\log n) \cdot d(u, v) .
$$

This is what we wanted to show.
This tree embedding algorithm was proven by Fakcharoenphol, Rao, and Talwar [FRT04].
An interesting related topic is the following. Given a (not necessarily metric or even complete) graph $G=(V, E)$, let d denote the shortest path metric of G. The goal here is to find a distribution over spanning trees T of G such that $\mathrm{E}[T(u, v)] \leq \alpha \cdot d(u, v)$ for the smallest possible α. Abraham, Bartal, and Neiman show a nearly tight bound with $\alpha=O\left(\log n \cdot \log \log n \cdot(\log \log \log n)^{3}\right)$ [ABN08] (nearly tight with the known lower bound of $\Omega(\log n)$).

References

ABN08 I. Abraham, Y. Bartal, and O. Neiman, Nearly tight low stretch spanning trees, In Proceedings of FOCS, 2008.

FRT04 J. Fakcharoenphol, S. Rao, and K. Talwar, A tight bound on ppproximating arbitrary metrics by tree metrics, Journal of Computer and System Sciences, 69:485-497, 2004.

