```
CMPUT 675: Approximation Algorithms
```

Fall 2014

Lecture 24 (Oct 31): Tree Metrics — Part 2

Lecturer: Zachary Friggstad Scribe: Yifeng Zhang

24.1 Tree Metrics

We finish the discussion of the tree embedding algorithm in this lecture. The basic definitions are found in the previous lectures' notes. We recall the algorithm here.

Algorithm 1 Partitioning Scheme for the Tree Metric

```
Sample r_0 uniformly from [1/2,1). Set r_i=2^i\cdot r_0 for 1\leq i\leq \Delta. (Recall that \log_2(\Delta)=\lceil\log_2(\operatorname{diam}(V))\rceil) Let \pi:V\to V be a random permutation of V \mathcal{C}(\log_2(\Delta))=\{V\} for i from \log(\Delta) down to 1 do \mathcal{C}(i-1)\leftarrow\emptyset for each \mathcal{S}\in\mathcal{C}(i) do S'\leftarrow S for each v\in V in order of \pi do S^*\leftarrow B(v,r_{i-1})\cap S' if S^*\neq\emptyset then \mathcal{C}(i-1)\leftarrow\mathcal{C}(i-1)\cup\{S^*\} S'\leftarrow S'-S^* Add an edge with distance 2^i connecting the vertices corresponding to S^* and S
```

Note that for each level i, C(i) is a partition of V the leaves of the constructed tree. Furthermore, the leaf nodes are the singleton sets in C(1) and we identify $v \in V$ with the leaf node for set $\{v\} \in C(1)$.

For any two $u, v \in V$, we say that their least common ancestor is at level i if there is some $S \in C(i)$ such that $u, v \in S$ but u and v lie in different sets of C(i+1). We prove the following lemma last class, which we are restating for reference.

Lemma 1 For all pairs $u, v \in V$, $d(u, v) \leq T(u, v) \leq 2^{i+2}$ where the least common ancestor of u and v is at level i.

In this lecture, we complete the analysis of Algorithm 1 by proving the following.

```
Theorem 1 For any pair u, v \in V, E[T(u, v)] \leq O(\log n) \cdot d(u, v)
```

From now on, we fix u and v. The following concepts will help us examine the expected stretch of (u, v).

Definition 1 For a vertex $w \in V$, say w settles u, v at level i if w is the first vertex (with respect to π) such that $B(r_{i-1}, w) \cap \{u, v\} \neq \emptyset$.

Note that for each level i, there is exactly one vertex w that settles u, v at level i.

Definition 2 For a vertex $w \in V$, w cuts u, v at level i if $|B(r_{i-1}, w) \cap \{u, v\}| = 1$.

In the following discussion, for a pair $u, v \in V$, we will use some $\{0, 1\}$ -random variables:

- $\mathbf{S}_{iw} = 1$ if w settles u, v at level i.
- $\mathbf{X}_{iw} = 1$ if w cuts u, v at level i.

Claim 1 If the least common ancestor of u and v is at level i, then there is some $w \in V$ that both settles and cuts u, v at level i (i.e. $\mathbf{S}_{iw} = \mathbf{X}_{iw} = 1$).

Proof. Let w be the vertex such that $\mathbf{S}_{iw} = 1$. Suppose, without loss of generality, that $u \in B(r_{i-1}, w)$. If $v \in B(r_{i-1}, w)$ as well then both u and v would be added to the same set in C(i-1) which contradicts the fact that i is the level of their least common ancestor. Therefore, $v \notin B(r_{i-1}, w)$ so $\mathbf{X}_{iw} = 1$ as well.

Using these tools, we complete the proof of the main result.

Proof of Theorem 1. If the least common ancestor of u and v is at level i, then $T(u,v) \leq 2^{i+2}$ by Lemma 1. By Claim 1, there is some $w \in V$ such that $\mathbf{X}_{iw} = 1$ and $\mathbf{S}_{iw} = 1$. Thus,

$$T(u, v) \le \sum_{i=1}^{\log_2 \Delta} \sum_{w \in V} 2^{i+1} \cdot \mathbf{X}_{iw} \cdot \mathbf{S}_{iw}.$$

In other words, by Claim 1 the latter sum includes 2^{i+2} where i is the level of the least common ancestor of u and v.

Therefore,

$$E[T(u,v)] \leq \sum_{i=1}^{\log_2 \Delta} \sum_{w \in V} 2^{i+1} \cdot \Pr[\mathbf{X}_{iw} = \mathbf{S}_{iw} = 1]$$

$$\leq \sum_{i=1}^{\log_2 \Delta} \sum_{w \in V} 2^{i+1} \cdot \Pr[\mathbf{S}_{iw} = 1 | \mathbf{X}_{iw} = 1] \cdot \Pr[\mathbf{X}_{iw} = 1]. \tag{24.1}$$

We simplify this sum in two ways. First, we will show that $Pr[\mathbf{S}_{iw} = 1 | \mathbf{X}_{iw} = 1]$ is bounded by some value b_w that is independent of level. If so, then we can bound (24.1) by

$$E[T(u, v)] \le \sum_{w \in V} b_w \sum_{i=1}^{\log \Delta} \Pr[\mathbf{X}_{iw} = 1] 2^{i+2}.$$

More explicitly:

Lemma 2 $Pr[\mathbf{S}_{iw} = 1 | \mathbf{X}_{iw} = 1] \leq b_w$ for some constant that is independent of level where $\sum_{w \in V} b_w = H_n = O(\log n)$.

Proof. Sort V by distance to $\{u, v\}$ i.e. $V = \{w_1, w_2, ..., w_n\}$ such that $d(w_j, \{u, v\}) \leq d(w_{j+1}, \{u, v\})$.

Fix some w_j . Given that $\mathbf{X}_{iw_j} = 1$, then surely $B(r_{i-1}, w_j) \cap \{u, v\} \neq \emptyset$. But then $B(r_{i-1}, w_{j'}) \cap \{u, v\} \neq \emptyset$ for every $1 \leq j' < j$. So if w_j both settles and cuts u, v at level i then π must order w_j before $w_{j'}, 1 \leq j' < j$. The probability that w_j is ordered before each $w_{j'}, j' < j$ is exactly 1/j.

Note that this also true in the conditional distribution (conditioned on the event $\mathbf{X}_{iw_j} = 1$) because the event that w_j is ordered before al $w_{j'}$ is independent of the random choice of radius. Therefore,

$$b_{w_i} := \Pr[\mathbf{S}_{iw_i} = 1 | \mathbf{X}_{iw_i} = 1] \le 1/j.$$

Finally, we also note that

$$\sum_{w \in V} b_w = \sum_{j=1}^n b_{w_j} = \sum_{j=1}^n \frac{1}{j} = H_n.$$

Lemma 3 For any vertex $w \in V$, $\sum_{i=1}^{\log \Delta} Pr[\mathbf{X}_{iw} = 1] \cdot 2^{i+2} \leq 16 \cdot d(u, v)$.

Proof. We assume $d(u, w) \leq d(v, w)$, otherwise we can exchange the roles of u and v in the proof.

Observe $\mathbf{X}_{iw} = 1$ if and only $r_{i-1} = r_0 2^{i-1}$ lies in the half-open interval [d(u, w), d(v, w)). Since r_0 is sampled uniformly from $[\frac{1}{2}, 1)$, then

$$\Pr[\mathbf{X}_{iw} = 1] = \frac{|[2^{i-2}, 2^{i-1}) \cap [d(u, w), d(v, w))|}{|[2^{i-2}, 2^{i-1}]|}.$$

$$=\frac{|[2^{i-2},2^{i-1})\cap[d(u,w),d(v,w))|}{2^{i-2}}$$

Therefore,

$$\Pr[\mathbf{X}_{iw} = 1] \cdot 2^{i+2} = 2^{i+2} \cdot \frac{|[2^{i-2}, 2^{i-1}) \cap [d(u, w), d(v, w))|}{2^{i-2}}$$
$$= 16 \cdot |[2^{i-2}, 2^{i-1}) \cap [d(u, w), d(v, w))|.$$

This shows

$$\sum_{i=1}^{\log \Delta} \Pr[\mathbf{X}_{iw} = 1] 2^{i+2} = 16 \sum_{i=1}^{\log \Delta} |[2^{i-2}, 2^{i-1}) \cap [d(u, w), d(v, w))|$$

The union of the disjoint intervals $[2^{i-2}, 2^{i-1})$ covers $[0, \Delta)$, so the last sum is

$$16 \cdot |[d(u, w), d(w, v))| = 16 \cdot (d(w, v) - d(u, w)) \le 16 \cdot d(u, v).$$

The last step is justified by the triangle inequality $d(w, v) \leq d(u, v) + d(u, w)$.

To wrap up, Lemma 2 allows us to bound (24.1) by $\sum_{w \in V} b_w \sum_{i=1}^{\log \Delta} Pr[\mathbf{X}_{iw} = 1] \cdot 2^{i+2}$. By Lemma 3, this is at most

$$16 \cdot d(u,v) \cdot \sum_{w \in V} b_w = 16 \cdot d(u,v) \cdot H_n = O(\log n) \cdot d(u,v).$$

This is what we wanted to show.

This tree embedding algorithm was proven by Fakcharoenphol, Rao, and Talwar [FRT04].

An interesting related topic is the following. Given a (not necessarily metric or even complete) graph G = (V, E), let d denote the shortest path metric of G. The goal here is to find a distribution over spanning trees T of G such that $\mathrm{E}[T(u,v)] \leq \alpha \cdot d(u,v)$ for the smallest possible α . Abraham, Bartal, and Neiman show a nearly tight bound with $\alpha = O(\log n \cdot \log \log n \cdot (\log \log \log n)^3)$ [ABN08] (nearly tight with the known lower bound of $\Omega(\log n)$).

References

- ABN08 I. Abraham, Y. Bartal, and O. Neiman, Nearly tight low stretch spanning trees, In Proceedings of FOCS, 2008.
- FRT04 J. Fakcharoenphol, S. Rao, and K. Talwar, A tight bound on ppproximating arbitrary metrics by tree metrics, *Journal of Computer and System Sciences*, 69:485–497, 2004.