
CMPUT 675: Approximation Algorithms Fall 2014

Lecture 23 (Oct 29): Tree Metrics — Part 1
Lecturer: Zachary Friggstad Scribe: Leah Hackman

23.1 Tree Metrics

Let (V, d) be a metric (with V locations, and d is our metric function d : V ×V → R which satisfies the standard
metric properties).

Definition 1 A tree metric for (V, d) as a tree T with vertices V ′ ⊆ V with edge lengths such that for each
u, v ∈ E we have d(u, v) ≤ T (u, v). Here, T (u, v) is the distance between between u and v in the tree.

Trees have a lot of nice properties which make some problems easier to solve or approximate, and so it can be
helpful to reframe a problem to use a tree metric. That being said, not all tree metrics are good. We have
defined tree metrics so that they provide an upper bound of our original distance metric, but have made no
stipulations on how tight this bound is.

We say that the tree metric T for (V, d) has stretch α if:

T (u, v) ≤ α · d(u, v) for each u, v ∈ V

Knowing the stretch of a tree metric allows us to put an approximation bound on our solution. For an appropriate
problem (such as one where the objective is to minimize the sum of edge lengths used), if OPTT is the optimal
solution on a tree metric T for the original metric (V, d) and if T has stretch α, then OPTT ≤ α · OPT . If we
have a β-approximation of OPTT , then this leads to an α · β-appxorimation of OPT .

Unfortunately, some metrics cannot be well approximated by a tree metric at all. For example, one can show
that the cycle Cn with unit weight edges requires stretch α ≥ n−1

8 . However, we can get around this barrier
with a randomized approach: a probability distribution over tree metrics.

Theorem 1 For any metric (V, d), we can randomly construct a tree metric T in polynomial time such that:

E[T (u, v)] ≤ O(log(|V |)) · d(u, v) for each u, v ∈ V

23.1.1 The Construction

We will describe some general properties of all of the trees the randomized construction produces. First, for
simplicity later, let us assume that min

u,v∈V
u6=v

d(u, v) = 1. We can scale all our distances to make this true if it isn’t.

In the tree we construct, we can associate every node ` ∈ T as being associated to a subset of V : S` ⊆ V . The
leaves of T will correspond to the vertices in V and we sometimes index the leaves of T with v ∈ V .

23-1

23-2 Lecture 23: Tree Metrics — Part 1

For any subset S ⊆ V , let diam(S) := max
u,v∈S

d(u, v). Let ∆ be the smallest power of 2 that is at least diam(V).

That is, ∆ = 2h where h = dlog2(diam(V))e.

The tree we randomly construct will also satisfy the following properties:

• Any edge from i to level i+ 1 has cost 2i+1

• For a tree vertex u with children w1, . . . , wa

Su =
⋃

1≤i≤a

Swi and Swi ∩ Swj = ∅, i 6= j

That is, the sets Swi
partition Su.

• For a tree vertex u at level i, diam(Su) ≤ 2i

• The root node r of the tree has Sr = V and is at level h.

See Figure 23.1 for an example tree and a visual explanation of the term “level”.

Before we show how to build such a tree, let us first prove that such a tree forms a valid tree metric.

Lemma 1 For any such tree T (which satisfies the above properties), and any two u, v ∈ V then d(u, v) ≤
T (u, v). Also, if the least common ancestor of u and v in T is on level i, then T (u, v) ≤ 2i+2

Proof. The second bound is simple:

T (u, v) =

i∑
j=1

2 · 2j = 2 · (2i+1 − 2) ≤ 2i+2.

Note also that T (u, v) = 2 · (2i+1 − 2) ≥ 2i+1.

For the first bound, let k = blog2(d(u, v))c. We know that since u, v lie in some set Sw where w is at level i,
then diam(Sw) ≤ 2i means d(u, v) ≤ 2i. So, i ≥ k, otherwise d(u, v) ≤ 2k−1 < 2log2(d(u,v)) = d(u, v) which is
impossible.

From here, we see d(u, v) ≤ 2k+1 ≤ 2i+1 ≤ T (u, v).

To sample this tree, we use Algorithm 1. In this algorithm, C(i) defines the partition of the nodes of V in level
i. The sets in the partition C(i) are nodes of the tree T .

For v ∈ V and r ≥ 0, we let B(v, r) denote the ball of radius r around v, namely {u ∈ V : d(u, v) ≤ r}.

The algorithm runs in time that is polynomial in log ∆ and |V |, which is polynomial in description length of
the metric.

Lecture 23: Tree Metrics — Part 1 23-3

Figure 23.1: A labelled sample tree to explain “level”

Algorithm 1 An algorithmic for randomly building a tree metric T for (V, d) which has the property E[T (u, v)] ≤
O(log(|V |)) · d(u, v) for each u, v ∈ V

Sample r0 uniformly from [1/2, 1). Set ri = 2i · r0 for 1 ≤ i ≤ ∆. (Recall that log(∆) = dlog(diam(V))e)
Let π : V → V be a random permutation of V
C(log(∆)) = {V }
for i from log(∆) down to 1 do
C(i− 1)← ∅
for each S ∈ C(i) do
S′ ← S
for each v ∈ V in order of π do
S∗ ← B(v, ri−1) ∩ S′
if S∗ 6= ∅ then
C(i− 1)← C(i− 1) ∪ {S∗}
S′ ← S′ − S∗
Add an edge with distance 2i connecting the vertices corresponding to S∗ and S

