
CMPUT 675: Approximation Algorithms Fall 2014

Lecture 19 (Oct 20): Local Search
Lecturer: Zachary Friggstad Scribe: Zachary Friggstad

19.1 Analysis of the Local Search for k-Median

Recall the local search algorithm from last lecture. For a set S ⊆ F , we let d(j, S) = mini∈S d(i, j). The cost of
S was defined as f(S) :=

∑
j∈C d(j, S).

We first show that if the local search procedure is applied with δ = 0, then the resulting solution is a 5-
approximation. However, we do not have any good bounds on the running time of this algorithm so we chose
δ := ε

10k to be a small positive number (small enough to ensure the final solution is a good approximation but
large enough to guarantee polynomial running time). The analysis of this case will appear later.

Theorem 1 Let S ⊆ F, |S| = k be such that f(S−i+i′) ≥ f(S) for any i ∈ S, i′ ∈ F−S. Then f(S) ≤ 5·OPT .

The idea behind this proof is to describe a series of “test swaps”. First, we give some notation and then some
intuition.

Let S∗ be any fixed optimum solution. For any client j, let d∗j := d(j, S∗) and dj := d(j, S) be the distance
that j travels in the global and local optimum solution, respectively. That is,

∑
j∈C d

∗
j = f(S∗) = OPT and∑

j∈C dj = f(S).

Let φ : C → S map each j ∈ C to their nearest facility in S and φ∗ : C → S∗ map each j ∈ C to their nearest
facility in S∗. That is, d(φ(j), j) = dj and d(φ∗(j), j) = d∗j . Finally, let σ : S∗ → S map each i ∈ S∗ to its
nearest facility in S, so d(i, σ(i)) = d(i, S).

19.1.1 Intuition

Consider some client j ∈ C and suppose φ∗(j) 6∈ S. Consider swapping φ(j) out and φ∗(j) in. We have
d(j, S − φ(j) + φ(j∗)) ≤ d∗j because φ∗(j) is swapped in. So, the overall change in j’s assignment cost when
going from S to S − φ(j) + φ∗(j) is at most d∗j − dj . We know that 0 ≤ f(S − φ(j) + φ∗(j))− f(S) because S
is a locally optimum solution, so this suggests that in some way, dj is bounded by d∗j .

Of course, the situation is more complicated than this, but this is the basic approach: Use the optimum solution
to describe some test swaps. These will then give us inequalities we can use to bound the locally optimum
solution against the globally optimum solution.

19.2 A Simple Case

For simplicity, first suppose that σ(i) 6= σ(i′) for all i, i′ ∈ S∗.

Consider any i ∈ S∗. We provide an upper bound on f(S − σ(i) + i) by explicitly describing how to reassign
the clients.

19-1

19-2 Lecture 19: Local Search

1. any j ∈ C with φ∗(j) = i is assigned to i

2. any j ∈ C with φ(j) = σ(i) but φ∗(j) 6= i is assigned to σ(φ∗(j))

3. every other client is assigned to φ(j)

First, we claim that this is a valid assignment (i.e. every client is assigned to an facility in S − σ(i) + i). We
opened φ∗(j), so the first group of clients are properly assigned. For the second, if φ∗(j) 6= i then our assumption
in this section means σ(φ∗(j)) 6= φ(j). Therefore, the second group of clients are assigned to open facilities.
Finally, every client in the third group has φ(j) 6= σ(i) and we only closed σ(i).

Now that we know this is a valid reassignment, local optimality of S implies

0 ≤ f(S − σ(i) + i)− f(S)

≤
∑

j:φ∗(j)=i

(d∗j − dj) +
∑

j:φ(j)=σ(i)
and φ∗(j)6=i

d(σ(φ∗(j)), j)− dj (19.1)

The first sum corresponds to the first group of clients and the second sum to the second group of clients. The
third group of clients contribute the same to both f(S − σ(i) + i) and f(S) so their contributions cancel.

We can bound the last term as follows.

Lemma 1 For any j ∈ C, d(σ(φ∗(j)), j) ≤ 2d∗j + dj.

Proof. We have

d(σ(φ∗(j)), j) ≤ d(φ∗(j), j) + d(φ∗(j), σ(φ∗(j))

= d∗j + d(φ∗(j), σ(φ∗(j))

≤ d∗j + d(φ∗(j), φ(j))

≤ d∗j + d(φ∗(j), j) + d(j, φ(j))

= d∗j + d∗j + dj .

The first and third inequalities are by the triangle inequality. The second is because σ(φ∗(j)) is the closest
facility in S to φ∗(j), so it is no further than φ(j).

We can then bound expression (19.1) by ∑
j:φ∗(j)=i

(d∗j − dj) +
∑

j:φ(j)=σ(i)
and φ∗(j) 6=i

2d∗j

≤
∑

j:φ∗(j)=i

(d∗j − dj) +
∑

j:φ(j)=σ(i)

2d∗j

Summing these over all i ∈ S∗, we see

0 ≤
∑
i∈S∗

f(S − σ(i) + i)− f(S)

≤
∑
i∈S∗

 ∑
j:φ∗(j)=i

(d∗j − dj) +
∑

j:φ(j)=σ(i)

2d∗j

 .

Lecture 19: Local Search 19-3

Now, for each j ∈ C we see that −dj is counted only for i = φ∗(j). We also see that d∗j is counted once in the
first inner sum (when i = φ∗(j)) and is counted once (with weight 2) in the second inner sum only when ∈ S∗
is such that σ(i) = φj . Therefore, the last expression is bounded by∑

j∈C
3d∗j −

∑
j∈C

dj = 3 ·OPT − f(S).

Therefore, f(S) ≤ 3 ·OPT .

19.2.1 The General Case

Now we consider the general case where it may be that σ(i) = σ(i′) for distinct i, i′ ∈ S∗. The only place in
the analysis for the simpler case where this could cause any problems is when describing a valid reassignment,
namely we assigned some j with φ(j) = σ(i) to σ(φ∗(j)). This was a valid reassignment (i.e. σ(φ∗(j)) was still
open after the swap) by the assumption that no other i′ ∈ S∗, i′ 6= i has σ(i′) = σ(i).

However, without this assumption it might be that σ(φ∗(j)) = σ(i) even if φ∗(j) 6= i, which causes a problem
when we try to reassign the clients to upper bound the cost of f(S − σ(i) + i). We now describe how to handle
this below.

Partition S and S∗ as follows. Let S = O ∪M ∪N where |σ−1(i)| = 1 for i ∈ O, |σ−1(i)| ≥ 2 for i ∈ M , and
|σ−1(i)| = 0 for i ∈ N . Also let S∗ = O∗ ∪M∗ where σ(i) ∈ O for i ∈ O∗ and σ(i) ∈M for i ∈M∗. See Figure
19.1 for an illustration.

O⇤M⇤

M N O�(i)

i

Figure 19.1: Illustration of the mapping σ : S∗ → S and the partitioning of S and S∗.

For i ∈ O∗, we perform the swap S − σ(i) + i as before. This generates the following bound, the proof is the
same as before.

Lemma 2 For any i ∈ O∗ we have

0 ≤ f(S − σ(i) + i)− f(S) ≤
∑

j:φ∗(j)=i

(d∗j − dj) +
∑

j:φ(j)=σ(i)

2d∗j .

For i ∈ M∗, we will choose some i′ ∈ N and perform the swap S − i′ + i. This i′ will be chosen carefully, but
first let’s see how to bound the cost change of this swap. It is similar to Lemma 2

19-4 Lecture 19: Local Search

Lemma 3 For any i ∈M∗ and any i′ ∈ N we have

0 ≤ f(S − i′ + i)− f(S) ≤
∑

j:φ∗(j)=i

(d∗j − dj) +
∑

j:φ(j)=i′

2d∗j .

Proof. We begin by describing a valid assignment of clients in S − i′ + i.

1. any j ∈ C with φ∗(j) = i is assigned to i

2. any j ∈ C with φ(j) = i′ but φ∗(j) 6= i is assigned to σ(φ∗(j))

3. every other client is assigned to φ(j)

As before, this is a valid reassignment. The only change is the assignment for the second group of clients, but
since i′ ∈ N then σ(φ∗(j)) 6= i′ so σ(φ∗(j)) ∈ S − i′ + i.

The cost change is bounded as follows

0 ≤ f(S − i′ + i)− f(S)

≤
∑

j:φ∗(j)=i

(d∗j − dj) +
∑

j:φ(j)=i′

and φ∗(j)6=i

d(σ(φ∗(j)), j)− dj

≤
∑

j:φ∗(j)=i

(d∗j − dj) +
∑

j:φ(j)=i′

and φ∗(j)6=i

2d∗j

≤
∑

j:φ∗(j)=i

(d∗j − dj) +
∑

j:φ(j)=i′

2d∗j .

The second inequality follows from Lemma 1.

We will use Lemma 3 in our final bound, but we have to ensure no individual d∗j term appears too often. We
need to swap in each i ∈ M∗ once to get the −dj term, but we do not want to swap out any i′ ∈ N too many
times. The following ensures this is possible.

Lemma 4 We have |M∗| ≤ 2|N |.

Proof. For every i ∈M there are at least two i1, i2 ∈M∗ with σ(i1) = σ(i2) = i. Thus, |M∗|/2 ≥ |M |.

Next, recall |M |+ |O|+ |N | = k = |M∗|+ |O∗|. Clearly |O| = |O∗|, so |M |+ |N | = |M∗|. Considering this and
|M∗|/2 ≥ |M |, we see |M∗|/2 ≤ |N |.

Let P ⊆ M∗ × N be any collection of pairs such that each i ∈ M∗ appears in exactly one pair of P and each
i′ ∈ N appears in at most two pairs of P. The previous lemma ensures this is possible. For example, process
the i ∈ M∗ in any order. For each i, add (i, i′) to P where i′ is any facility in N does not yet appear in two
pairs of P.

Combining Lemma 2 and 3 and our careful construction of the set of test swaps P shows:

0 ≤
∑
i∈O∗

[f(S − σ(i) + i)− f(S)] +
∑

(i,i′)∈P
[f(S − i′ + i)− f(S)]

≤
∑
i∈O∗

 ∑
j:φ∗(j)=i

(d∗j − dj) +
∑

j:φ(j)=σ(i)

2d∗j

 +
∑

(i,i′)∈P

 ∑
j:φ∗(j)=i

(d∗j − dj) +
∑

j:φ(j)=i′

2d∗j

 (19.2)

Lecture 19: Local Search 19-5

We conclude by bounding the extent to which each d∗j and dj term is considered in these sums. For a client
j ∈ C, we see −dj exactly when φ∗(j) is swapped in and this happens once between both outer sums: if
φ∗(j) ∈ O∗ then it is swapped in exactly once in the first outer sum and if φ∗(j) ∈M∗ it is swapped in exactly
once in the second outer sum by how we constructed P.

Now consider the extent to which d∗j appears in these sums for a client j.

• If φ(j) ∈ O: Then d∗j appears once in the first inner sum of the first outer sum and once (with weight 2) in
the second inner sum of the first outer sum. It does not appear in the second outer sum (since φ(j) 6∈ N),
so d∗j is counted with weight at most 3 in this sum.

• φ(j) ∈ N : Then d∗j appears once in the first inner sum of the second outer sum and at most twice in the
second inner sum of the second outer sum. This is because φ(j) ∈ N and at most two (i, i′) pairs in P
have i′ = φ(j) by how we constructed P. Thus, its total contribution to the bound is at most 5d∗j .

• φ(j) ∈M : Then d∗j does not appear anywhere among these sums.

In the worst of these cases, we have that each d∗j , j ∈ C is considered in expression (19.2) to an extent of at
most 5.

To summarize, we can bound expression (19.2) by
∑
j∈C 5d∗j − dj = 5 · OPT − f(S). Overall, we have shown

0 ≤ 5 ·OPT − f(S) which proves Theorem 1.

19.3 The Polynomial-Time Approximation

Recall that the polynomial-time local search algorithm only updates S if f(S − i′ + i) < (1− δ) · f(S) for some
i′ ∈ S, i ∈ F − S where δ := ε

10k for some prespecified ε. The algorithm would run in time that is polynomial
in the input size at 1/ε. We now extend the analysis above to this case.

Theorem 2 Let δ = ε
10k for some 0 ≤ ε ≤ 1. For any S ⊆ F, |S| = k such that f(S − i′ + i) ≥ (1 − δ) · f(S)

for any i′ ∈ S, i ∈ F − S we have f(S) ≤ (5 + ε) ·OPT .

Proof. Consider any test swap S → S − i′ + i. We then have

0 ≤ f(S − i′ + i)− (1− δ) · f(S) = f(S − i′ + i)− f(S) + δ · f(S).

Let P ′ be the pairs of facilities swapped in the analysis in Section 19.2.1 (i.e. the (i, σ(i)) swaps for i ∈ O∗ and
all swaps in P). Note that |P ′| = k.

The previous analysis shows

0 ≤
∑

(i,i′)∈P′
[f(S − i′ + i)− f(S) + δ · f(S)] ≤ 5 ·OPT − f(S) + k · δ · f(S). (19.3)

Rearranging and recalling δ = ε
10k , we see (1− ε/10)f(S) ≤ 5 ·OPT . Because ε ≤ 1, we have

f(S) ≤ 5

1− ε/10
·OPT ≤ (5 + ε) ·OPT.

19-6 Lecture 19: Local Search

Notice the role of the number of swaps in the approximation ratio. In the bound in (19.3), the number of times
the extra δ · f(S) term was added is equal to the number of test swaps, namely k. Thus, δ was chosen so that
(# of test swaps) · δ = k · δ is appropriately small.

This is the general idea behind many local search algorithms: analyze the case where the swaps are made if any
improvement can be made. As long as the number of test swaps in the analysis is polynomially small, this leads
to a polynomial-time algorithm by choosing δ to be an appropriately small value that is roughly ε divided by
the number of test swaps.

19.4 Discussion

The analysis of the local search algorithms for k-Median was initially performed by Arya et al. [A+04]. They
showed a more general local-search algorithm that yields a 3+ε approximation. This was the best approximation
for k-median for roughly a decade until Li and Svensson obtained an LP-based approximation (with an additional
trick) and obtained a 1 +

√
3 + ε ≈ 2.732 approximation [LS13]. Currently, the best approximation is by Byrka

et al [B+14] who obtain roughly a 2.611-approximation. On the negative side, it is hard to approximation
k-median within a factor better than 1 + 2/e ≈ 1.736 [JMS02].

The analysis in these lecture notes is due to Gupta and Tangwonsan [GT08].

References

A+04 V. Arya, N. Garg, R. Khandekar, A. Meyerson, K. Munagala, and V. Pandit, Local search heuristics for
k-median and facility location problems, SIAM Journal on Computing, 33(3):544–562, 2004.

B+14 J. Byrka, T. Pensyl, B. Rybicki, A. Srinivasan, and K. Trinh, An improved approximation for k-median,
and positive correlation in budgeted optimization, To appear in Proceedings of ACM-SIAM Symposium
on Discrete Algorithms, 2015.

GT08 A. Gupta and K. Tangwonsan, Simpler analysis of local search algorithms for facility location, CoRR:abs/0809.2554,
http://arxiv.org/abs/0809.2554, 2008.

JMS02 K. Jain, M. Mahdian, and A. Saberi, A new greedy approach for facility location problems, In Proceedings
of ACM Symposium on Theory of Computing, 2002.

LS13 S. Li and O. Svensson, Approximating k-median by pseudo-approximation, In Proceedings of ACM Sym-
posium on Theory of Computing, 2013.

http://arxiv.org/abs/0809.2554

	Analysis of the Local Search for k-Median
	Intuition

	A Simple Case
	The General Case

	The Polynomial-Time Approximation
	Discussion

