
CMPUT 675: Approximation Algorithms Fall 2014

Lecture 18 (Oct 17): Steiner Forest and k-Median
Lecturer: Zachary Friggstad Scribe: Nikos Fasarakis-Hilliard

18.1 Steiner Forest Generalizations

We continue our discussion of Steiner Forest in a more general context.

Let f : 2V → {0, 1} be a function that satisfies the following properties:

1. f(∅) = f(V) = 0.

2. f(S) = f(V − S), for all ∅ ⊆ S ⊆ V .

3. f(S ∪ T) ≤ max{f(S), f(T)} for any two disjoint sets S, T ⊆ V .

Call such a function proper. For example, the function f(.) from last lecture for the Steiner Forest problem
is easily seen to be proper. So is the function f with f(S) = |S| (mod 2) when |V | is even. More generally, if b
is an integer such that |V | is a multiple of b, then the function f with f(S) = 1 if and only if b does not divide
|S| is proper.

In Lecture 16, we made the following claim (using the notation from the algorithm description in Lecture 16).

Claim 1 Consider any iteration i and let F be the final set of returned edges. We have
∑
S∈Ci |F ∩δ(S)| ≤ 2|Ci|,

i.e. the average degree of the “active” sets in iteration i is at most 2.

In fact, the algorithm from Lecture 16 can be executed if f is a proper function where, instead of being explicitly
supplied in the input, we are able to compute f(S) efficiently for any S ⊆ V . Essentially the only thing that
needs to be proven to establish correctness and efficiency of the algorithm is the following.

Lemma 1 If f is a proper function and F ⊆ E is not feasible, then the minimal sets S with δ(S) ∩ F = ∅ and
f(S) = 1 are connected components of (V, F).

Proof. Suppose S is such that δ(S) ∩ F = ∅ and f(S) = 1. Because δ(S) ∩ F = ∅ then S is the union of some
connected components of (V, F). Because f(S) = 1, we know S 6= ∅.

Assume S is not a single connected component. Let C ⊆ S be any connected component and note that C − S
is also a union of connected components. Because f is proper, we then have either f(S) = 1 or f(C − S) = 1.
Therefore, S is not a minimal subset with f(S) = 1 and δ(S) ∩ F = ∅.

Proof of Claim 1. First recall that in any tree on n nodes, the total degree is 2(n− 1). If S ⊆ (nodes in T)

18-1

18-2 Lecture 18: Steiner Forest and k-Median

is such that all leaves are is S, then:∑
v∈S

degT (v) =
∑
v∈T

degT (v)−
∑
v 6∈S

degT (v)

= 2(n− 1)−
∑
v 6∈S

degT (v)

≤ 2(n− 1)− 2(n− |S|) (Because degT (v) ≥ 2 for a non-leaf v)

= 2|S| − 2. (18.1)

The total degree of nodes in S is 2|S| − 2 hence the average degree of v ∈ S is ≤ 2.

We will heavily use the notation from the Steiner Forest algorithm from last lecture, with the understanding
that the algorithm applies to arbitrary proper functions. Now consider iteration i. Let C′i be the set of connected
components of (V, Fi) and note that Ci ⊆ C′i is the set of components S of (V, Fi) with f(S) = 1.

Consider the graph H = (C′i, Ei) where we have an edge in Ei for every (u, v) ∈ F with u and v in different
components of C′i. First, we claim that H is a forest. To see this, first note that Fi′ is a forest for every iteration
i′ because we only add a single edge per iteration and this edge bridges two connected components (so it cannot
create a cycle).

Consider the final set of edges F ′ after the first loop but before the pruning. Because the components of (V, Fi)
are connected subtrees of F ′, then contracting them results in a forest. The edges in Ei are a subset of the
edges that remain after these components are pruned.

Finally, we prove that all leaves in H are active. To achieve this, we are going to use the fact that function f
is proper and that F is minimal.

Suppose that S is an inactive leaf on H with parent edge e. Let B be the collection of connected components
in C′i that are connected to S. Because H is a forest, then the restriction of H to B and all incident edges is a
tree.

Then:

1. f(S) = 0: This is simply because S is inactive.

2. f(B − S) = 1: To see this, note by minimality that F is feasible but F − {e} is infeasible. Lemma 1
implies there is some connected component S′ of (V, F −{e}) that has f(S′) = 1. But the only connected
components in (V, F − {e}) that are not also in (V, F) are S and B − S. We know f(S) = 0, so it must
be that f(B − S) = 1. This is illustrated in Figure 18.1.

3. Since f is proper, f(V − (B − S)) = 1 by property 2. Equivalently, f((V −B) ∪ S) = 1

Therefore, either f(V −B) = 1 or f(S) = 1 by property 3. Again, since f(S) = 0 it must be that f(V −B) = 1.
But if f(V −B) = 1, then f(B) = 1 by property 2. However, δ(S) ∩ F = ∅ which contradicts F being feasible.

18.2 The k-Median problem

Now we take a short break from LPs.

The k-Median problem is a variant of the k-Suppliers problem we have seen in Assignment 2. We are given
a set of vertices V portioned into clients C and facilities F = V − C as well as distances d(i, j) for all i, j ∈ V .

Lecture 18: Steiner Forest and k-Median 18-3

e

S

B

Figure 18.1: Illustration for proof of claim 1: The set B contains all nodes connected to inactive leaf S in the graph H
and e denotes the parent edge of S.

We are also given integer 1 ≤ k ≤ |F |. The goal is to find a S ⊆ F , with |S| = k, that minimizes

f(S) ,
∑
j∈C

max
i∈S

d(i, j) =
∑
j∈C

d(j, S). (18.2)

Note that rather that tying to minimize the maximum distance of a client to a facility as in k-Suppliers, we
minimize the sum of distances between clients and their nearest facility.

A simple greedy algorithm for the k-Median problem is presented below. For i ∈ S, i′ ∈ F −S we let S− i+ i′

denote (S − {i}) ∪ {i′}.

Algorithm 1 Local Search for k-Median

S ← any subset of F of size k
while ∃ i ∈ S, i′ ∈ F − S s.t f(S) > f(S − i+ i′) do
S ← S − i+ i′

end while
return S

We will show the above algorithm is a 5-approximation for the k-Median problem. However, it is not guaranteed
to run in polynomial time. To overcome this issue, we consider a slight variant of Algorithm 1 where ε is a
parameter we may specify.

Claim 2 Algorithm 2 runs in polynomial time in the input size and 1
ε .

Proof. It is easy to check if there is a 0-cost solution. If some client j has d(i, j) > 0 for any facility then there
is no 0-cost solution. Otherwise, we may assume d(i, i′) > 0 for any two i, i′, otherwise we can discard one of

18-4 Lecture 18: Steiner Forest and k-Median

Algorithm 2 Polynomial-Time Local Search for k-Median

If there is a solution with cost 0, then return it.
δ ← ε/(10 · k)
S ← any subset of F of size k
while ∃ i ∈ S, i′ ∈ F − S s.t (1− δ) · f(S) > f(S − i+ i′) do
S ← S − i+ i′

end while
return S

them which does not change the optimum (clearly there is no point of opening both if d(i, i′) = 0). But then
there is a 0-cost solution if and only if the number of remaining facilities is at most k.

Next, let

∆ =
n ·maxi,j d(i, j)

mini,j:d(i,j)>0 d(i, j)
.

Note that log ∆ is polynomial in the input size (i.e. number of bits used to describe the input).

Let SI and SF denote the initial and final set S used by the algorithm respectively. If t equals the number of
iterations performed by the algorithm then

f(SF) ≤ (1− δ)tf(SI).

The claim is that t ≤ 10·k
ε ln ∆, which is polynomial in the input size and 1

ε .

Otherwise, we would have

(1− δ)t < e− ln ∆ =
1

∆
,

where we have used the fact that (1− δ)1/δ ≤ 1
e . In other words, ∆ < f(SI)/f(SF).

However, we know f(SI) ≤ n ·maxi,j d(i, j) because each of the n clients travels distance at most the maximum
distance in the metric. and we also know f(SF) ≥ mini,j:d(i,j)>0 d(i, j) because there is no 0-cost solution so
some client has to travel distance at least the minimum nonzero distance in the metric. Thus, f(SI)/f(SF) ≤ ∆
which contradicts what we just saw.

Therefore, this is a polynomial-time algorithm.

