18.1 Steiner Forest Generalizations

We continue our discussion of Steiner Forest in a more general context.
Let $f: 2^{V} \rightarrow\{0,1\}$ be a function that satisfies the following properties:

1. $f(\emptyset)=f(V)=0$.
2. $f(S)=f(V-S)$, for all $\emptyset \subseteq S \subseteq V$.
3. $f(S \cup T) \leq \max \{f(S), f(T)\}$ for any two disjoint sets $S, T \subseteq V$.

Call such a function proper. For example, the function f (.) from last lecture for the Steiner Forest problem is easily seen to be proper. So is the function f with $f(S)=|S|(\bmod 2)$ when $|V|$ is even. More generally, if b is an integer such that $|V|$ is a multiple of b, then the function f with $f(S)=1$ if and only if b does not divide $|S|$ is proper.

In Lecture 16, we made the following claim (using the notation from the algorithm description in Lecture 16).

Claim 1 Consider any iteration i and let F be the final set of returned edges. We have $\sum_{S \in \mathcal{C}_{i}}|F \cap \delta(S)| \leq 2\left|\mathcal{C}_{i}\right|$, i.e. the average degree of the "active" sets in iteration i is at most 2.

In fact, the algorithm from Lecture 16 can be executed if f is a proper function where, instead of being explicitly supplied in the input, we are able to compute $f(S)$ efficiently for any $S \subseteq V$. Essentially the only thing that needs to be proven to establish correctness and efficiency of the algorithm is the following.

Lemma 1 If f is a proper function and $F \subseteq E$ is not feasible, then the minimal sets S with $\delta(S) \cap F=\emptyset$ and $f(S)=1$ are connected components of (V, F).

Proof. Suppose S is such that $\delta(S) \cap F=\emptyset$ and $f(S)=1$. Because $\delta(S) \cap F=\emptyset$ then S is the union of some connected components of (V, F). Because $f(S)=1$, we know $S \neq \emptyset$.

Assume S is not a single connected component. Let $C \subseteq S$ be any connected component and note that $C-S$ is also a union of connected components. Because f is proper, we then have either $f(S)=1$ or $f(C-S)=1$. Therefore, S is not a minimal subset with $f(S)=1$ and $\delta(S) \cap F=\emptyset$.

Proof of Claim 1. First recall that in any tree on n nodes, the total degree is $2(n-1)$. If $S \subseteq($ nodes in $T)$
is such that all leaves are is S, then:

$$
\begin{align*}
\sum_{v \in S} \operatorname{deg}_{T}(v) & =\sum_{v \in T} \operatorname{deg}_{T}(v)-\sum_{v \notin S} \operatorname{deg}_{T}(v) \\
& =2(n-1)-\sum_{v \notin S} \operatorname{deg}_{T}(v) \\
& \leq 2(n-1)-2(n-|S|) \tag{18.1}\\
& =2|S|-2 .
\end{align*}
$$

$$
\leq 2(n-1)-2(n-|S|) \quad\left(\operatorname{Because}^{\operatorname{deg}}{ }_{T}(v) \geq 2 \text { for a non-leaf } v\right)
$$

The total degree of nodes in S is $2|S|-2$ hence the average degree of $v \in S$ is ≤ 2.
We will heavily use the notation from the Steiner Forest algorithm from last lecture, with the understanding that the algorithm applies to arbitrary proper functions. Now consider iteration i. Let \mathcal{C}_{i}^{\prime} be the set of connected components of (V, F_{i}) and note that $\mathcal{C}_{i} \subseteq \mathcal{C}_{i}^{\prime}$ is the set of components S of $\left(V, F_{i}\right)$ with $f(S)=1$.

Consider the graph $H=\left(\mathcal{C}_{i}^{\prime}, E_{i}\right)$ where we have an edge in E_{i} for every $(u, v) \in F$ with u and v in different components of \mathcal{C}_{i}^{\prime}. First, we claim that H is a forest. To see this, first note that $F_{i^{\prime}}$ is a forest for every iteration i^{\prime} because we only add a single edge per iteration and this edge bridges two connected components (so it cannot create a cycle).

Consider the final set of edges F^{\prime} after the first loop but before the pruning. Because the components of $\left(V, F_{i}\right)$ are connected subtrees of F^{\prime}, then contracting them results in a forest. The edges in E_{i} are a subset of the edges that remain after these components are pruned.

Finally, we prove that all leaves in H are active. To achieve this, we are going to use the fact that function f is proper and that F is minimal.

Suppose that S is an inactive leaf on H with parent edge e. Let B be the collection of connected components in \mathcal{C}_{i}^{\prime} that are connected to S. Because H is a forest, then the restriction of H to B and all incident edges is a tree.

Then:

1. $f(S)=0$: This is simply because S is inactive.
2. $f(B-S)=1$: To see this, note by minimality that F is feasible but $F-\{e\}$ is infeasible. Lemma 1 implies there is some connected component S^{\prime} of $(V, F-\{e\})$ that has $f\left(S^{\prime}\right)=1$. But the only connected components in $(V, F-\{e\})$ that are not also in (V, F) are S and $B-S$. We know $f(S)=0$, so it must be that $f(B-S)=1$. This is illustrated in Figure 18.1.
3. Since f is proper, $f(V-(B-S))=1$ by property 2 . Equivalently, $f((V-B) \cup S)=1$

Therefore, either $f(V-B)=1$ or $f(S)=1$ by property 3 . Again, since $f(S)=0$ it must be that $f(V-B)=1$. But if $f(V-B)=1$, then $f(B)=1$ by property 2. However, $\delta(S) \cap F=\emptyset$ which contradicts F being feasible.

18.2 The k-Median problem

Now we take a short break from LPs.
The k-Median problem is a variant of the k-Suppliers problem we have seen in Assignment 2 . We are given a set of vertices V portioned into clients C and facilities $F=V-C$ as well as distances $d(i, j)$ for all $i, j \in V$.

Figure 18.1: Illustration for proof of claim 1: The set B contains all nodes connected to inactive leaf S in the graph H and e denotes the parent edge of S.

We are also given integer $1 \leq k \leq|F|$. The goal is to find a $S \subseteq F$, with $|S|=k$, that minimizes

$$
\begin{equation*}
f(S) \triangleq \sum_{j \in C} \max _{i \in S} d(i, j)=\sum_{j \in C} d(j, S) \tag{18.2}
\end{equation*}
$$

Note that rather that tying to minimize the maximum distance of a client to a facility as in k-SuppliERS, we minimize the sum of distances between clients and their nearest facility.

A simple greedy algorithm for the k-Median problem is presented below. For $i \in S, i^{\prime} \in F-S$ we let $S-i+i^{\prime}$ denote $(S-\{i\}) \cup\left\{i^{\prime}\right\}$.

```
Algorithm 1 Local Search for \(k\)-MEDIAN
    \(S \leftarrow\) any subset of \(F\) of size \(k\)
    while \(\exists i \in S, i^{\prime} \in F-S\) s.t \(f(S)>f\left(S-i+i^{\prime}\right)\) do
        \(S \leftarrow S-i+i^{\prime}\)
    end while
    return \(S\)
```

We will show the above algorithm is a 5 -approximation for the k-MEDIAN problem. However, it is not guaranteed to run in polynomial time. To overcome this issue, we consider a slight variant of Algorithm 1 where ϵ is a parameter we may specify.

Claim 2 Algorithm 2 runs in polynomial time in the input size and $\frac{1}{\epsilon}$.
Proof. It is easy to check if there is a 0 -cost solution. If some client j has $d(i, j)>0$ for any facility then there is no 0 -cost solution. Otherwise, we may assume $d\left(i, i^{\prime}\right)>0$ for any two i, i^{\prime}, otherwise we can discard one of

```
Algorithm 2 Polynomial-Time Local Search for \(k\)-MEDIAN
    If there is a solution with cost 0 , then return it.
    \(\delta \leftarrow \epsilon /(10 \cdot k)\)
    \(S \leftarrow\) any subset of \(F\) of size \(k\)
    while \(\exists i \in S, i^{\prime} \in F-S\) s.t \((1-\delta) \cdot f(S)>f\left(S-i+i^{\prime}\right)\) do
        \(S \leftarrow S-i+i^{\prime}\)
    end while
    return \(S\)
```

them which does not change the optimum (clearly there is no point of opening both if $d\left(i, i^{\prime}\right)=0$). But then there is a 0 -cost solution if and only if the number of remaining facilities is at most k.

Next, let

$$
\Delta=\frac{n \cdot \max _{i, j} d(i, j)}{\min _{i, j: d(i, j)>0} d(i, j)}
$$

Note that $\log \Delta$ is polynomial in the input size (i.e. number of bits used to describe the input).
Let S_{I} and S_{F} denote the initial and final set S used by the algorithm respectively. If t equals the number of iterations performed by the algorithm then

$$
f\left(S_{F}\right) \leq(1-\delta)^{t} f\left(S_{I}\right)
$$

The claim is that $t \leq \frac{10 \cdot k}{\epsilon} \ln \Delta$, which is polynomial in the input size and $\frac{1}{\epsilon}$.
Otherwise, we would have

$$
(1-\delta)^{t}<e^{-\ln \Delta}=\frac{1}{\Delta}
$$

where we have used the fact that $(1-\delta)^{1 / \delta} \leq \frac{1}{e}$. In other words, $\Delta<f\left(S_{I}\right) / f\left(S_{F}\right)$.
However, we know $f\left(S_{I}\right) \leq n \cdot \max _{i, j} d(i, j)$ because each of the n clients travels distance at most the maximum distance in the metric. and we also know $f\left(S_{F}\right) \geq \min _{i, j: d(i, j)>0} d(i, j)$ because there is no 0 -cost solution so some client has to travel distance at least the minimum nonzero distance in the metric. Thus, $f\left(S_{I}\right) / f\left(S_{F}\right) \leq \Delta$ which contradicts what we just saw.

Therefore, this is a polynomial-time algorithm.

