
CMPUT 675: Approximation Algorithms Fall 2014

Lecture 17 (Oct 15): Steiner Forest
Lecturer: Zachary Friggstad Scribe: Yifeng Zhang

17.1 Steiner Forest

Definition 1 In the Steiner Forest problem, we are given an undirected graph G = (V,E) with edge cost
ce ≥ 0, e ∈ E. Additionaly, we are given of pairs of vertices (s1, t1), (s2, t2), . . . , (sk, tk). The goal is to find the
cheapest forest F ⊆ E such that for each 1 ≤ i ≤ k, si and ti lie in the same component of (V, F)

Consider the function f : 2v → {0, 1} where for any S ⊆ V we have f(S) = 1 if and only if |S ∩ {si, ti}| = 1 for
some 1 ≤ i ≤ V . This notation will be useful when we consider a generalization of the Steiner Forest problem
next lecture.

Say that F ⊆ E is feasible if and only if δ(S)∩F 6= ∅ for every S ⊆ V with f(S) = 1. Note that F is feasible if
and only if si and ti lie in the same component of (V, F) for every 1 ≤ i ≤ k.

17.2 An LP Relaxation

Recall that δ(S) denotes the set of all edges in E that have exactly one endpoint in S.

minimize :
∑
e∈E

ce · xe

subject to :
∑
e∈δ(S)

xe ≥ 1 for any S ⊆ V with f(S) = 1

x ≥ 0

(LP-Primal)

Though this LP admits an efficient separation oracle (simply check that the minimum x-capacity si − ti cut is
at least 1 for each 1 ≤ i ≤ k), we will not need to solve it directly in our approximation. Rather, we will use the
primal-dual method: simultaneously build an integer primal solution and a feasible dual solution in a careful
way to ensure that their costs are close to each other.

The dual of (LP-Primal) is the following LP that has a variable yS for every S ⊆ V with f(S) = 1.

maximize :
∑

S⊆V :f(S)=1

yS

subject to :
∑

S⊆V :f(S)=1
e∈δ(S)

yS ≤ ce for each e ∈ E

y ≥ 0

(LP-Dual)

17-1

17-2 Lecture 17: Steiner Forest

Primal-dual algorithms are guided by complementary slackness conditions. Let’s inspect these conditions for
(LP-Primal) and (LP-Dual), where we use xe = 1 instead of xe > 0 because we are looking for an integer
primal solution.

1. xe = 1⇒
∑
S:f(S)=1,e∈δ(S) yS = ce for each e ∈ E

2. yS > 0⇒
∑
e∈δ(S) xe = 1 for each S ⊆ V with f(S) = 1

Of course, we cannot satisfy all of these conditions simultaneously; we want an integer primal solution. Some-
thing has to be relaxed.

The algorithm below ensures the first complementary slackness condition hold: an edge is not “bought” unless
its dual constraint is tight. However, it only satisfies a relaxed version of the second constraints.

First note that if we could ensure the edges we use F satisfy |δ(S)∩F | ≤ 2 for every S with yS > 0, then this is
a 2-approximation (c.f. previous lecture). However, even this is difficult to enforce. What the algorithm does is
ensure that the constructed primal and dual solutions have these second conditions hold, in some appropriate
sense, on average. This will be explained in more detail soon.

The following algorithm is our primal-dual approximation for Steiner Forest. For a given feasible dual
solution, say that an edge e is tight if the dual constraint for that edge holds with equality. The ∆i variables
are only used to help the analysis.

Algorithm 1 Steiner Forest Approximation

F1 ← ∅
y← 0
i← 1 (iteration counter)
while Fi is not feasible do

Let Ci be the set of components S of (V, Fi) with f(S) = 1
Raise all yS , S ∈ Ci uniformly until some edge e becomes tight
∆i ← the amount we raised each yS
Let Fi+1 ← Fi ∪ {e}
i← i+ 1

end while
F ← Fi
while there is some e ∈ F s.t. F − {e} is feasible do
F ← F − {e}

end while
return F

Note that throughout the execution of the algorithm that y is feasible. This is because we stop raising yS values
when some edge goes tight to ensure that no dual constraint is violated. Also, if multiple edges go tight then
pick any one of them to be e in the iteration.

To implement this efficiently, we do not have to explicitly initialize each entry of y to 0. Rather, only keep
track of the subsets S with yS > 0. Each iteration of the first loop has some edge go tight, so there are at most
m = |E| of these iterations. Each iteration raises at most n = |V | variables yS , so the total number of nonzero
variables is at most n ·m. Clearly every iteration can be performed in polynomial time.

The second “pruning” loop is necessary because the cost of F can be huge otherwise. Consider the following
simple example with V = {s, t, v1, . . . , vn−2} and edges E = {(s, t), (s, v1), (s, v2), . . . , (s, vn−2)} where c(s,t) = 3
and c(s,vi) = 1 for every 1 ≤ i ≤ n− 2. The only pair is the (s, t) pair. All edges (s, vi) will go tight before the

Lecture 17: Steiner Forest 17-3

(s, t) edge, so the cost of the tight edges before pruning is n− 1 whereas the optimum solution has cost 3. The
pruning phase will discard all edges except the (s, t) edge.

Our main result is the following.

Theorem 1 Algorithm 1 returns a solution F with cost at most 2 ·OPTLP.

To show this, we first note the following claim which will be proven in the next lecture. This is the averaging
argument alluded to above that will be used in place of the relaxed complementary slackness condition yS >
0⇒ |δ(S) ∩ F | ≤ 2.

Claim 1 Consider any iteration i and let F be the final set of returned edges. We have
∑
S∈Ci |F ∩δ(S)| ≤ 2|Ci|,

i.e. the average degree of the “active” sets in iteration i is at most 2.

Proof of Theorem 1. We emulate the proof of why relaxed complementary slackness conditions ensure
approximately optimal solutions while making appropriate adjustments for the averaging argument.

Let x be the integer solution where xe = 1 for e ∈ F and xe = 0 for e 6∈ F .

cost(F) =
∑
e∈F

ce

=
∑
e∈E

ce · xe

=
∑
e∈δ(S)

 ∑
S:f(S)=1
e∈δ(S)

yS

xe (17.1)

The last equality is by the fact that the dual constraint for each e ∈ F is tight under y. Continuing, we rearrange
(17.1) to get

∑
S:f(S)=1

yS

 ∑
e∈δ(S)

xe

 =
∑

S:f(S)=1

yS · |δ(S) ∩ F |. (17.2)

We break this last sum into the iterations. That is, in iteration i each yS , S ∈ Ci is raised by ∆i so the
total amount this iteration contributes to expression (17.2) is exactly

∑
S∈Ci ∆i · |δ(S) ∩ F |. Summing over all

iterations and using Claim (1), we see∑
S:f(S)=1

yS · |δ(S) ∩ F | =
∑
i

∆i

∑
S∈Ci

|δ(S) ∩ F |

≤ 2 ·
∑
i

∆i|Ci|

= 2 ·
∑

S:f(S)=1

yS .

The final equality holds because each yS value is equal to the sum of the ∆i values over all iterations where
S ∈ Ci.

Finally, because y is a feasible dual solution then by weak duality we have 2 ·
∑
S:f(S)=1 yS ≤ OPTLP. That is,

the cost of F is at most 2 ·OPTLP.

17-4 Lecture 17: Steiner Forest

This algorithm, along with generalizations that are discussed next lecture and in Assignment 3, are due to
Goemans and Williamson (see [GW95] for the Steiner Forest approximation). This is the best-known
approximation for Steiner Forest and it is a major open problem to find a better than 2-approximation.
This may be possible; in the special case of Steiner Tree that we have a ln(4) + ε approximation for any
constant ε > 0.

References

• GW95 M. X. Goemans and D. P. Williamson, A general approximation technique for constrained forest
problems, SIAM Journal on Computing, 24, 296–317, 1995.

