
CMPUT 675: Approximation Algorithms Fall 2014

Lecture 16 (Oct 10): Multicut in Trees
Lecturer: Zachary Friggstad Scribe: Nikos Fasarakis-Hilliard

16.1 Relaxed Complementary Slackness

In previous lectures, the concept of duality was introduced for linear programs (LPs). A general form of a LP
along with its dual is shown bellow:

minimize: cTx (Primal)

subject to: Ax ≥ b, (16.1)

x ≥ 0. (16.2)

maximize: bTy (Dual)

subject to: ATy ≤ c, (16.3)

y ≥ 0. (16.4)

We also saw a property of optimal primal & dual LP solutions called complementary slackness. It provides a
connection between the optimal solutions of both the primal and the dual problem. Complementary slackness
can also be utilized in the context of approximation algorithms.

Theorem 1 (Relaxed Complementary Slackness): Suppose x̄ and ȳ are feasible primal and dual solutions and
suppose α and β are values such that

(1) x̄j = 0 or
∑

i Aij ȳi ≥ cj/α, for each j,

(2) ȳi = 0 or
∑

j Aij x̄j ≥ βbi, for each i,

then cT x̄ ≤ αβ ·OPTLP and bT ȳ ≥ OPTLP/αβ.

Proof.

OPTLP ≤ cT x̄ =
∑
j

cj x̄j (Since x̄ is feasible)

≤
∑
j

(
α
∑
i

Aij ȳi
)
x̄j (Condition (1) and x̄ ≥ 0)

= α
∑
i

(∑
j

Aij x̄j
)
ȳi

≤ α
∑
i

βbiȳi (Condition (2) and ȳ ≥ 0)

= αβ · bT ȳ

≤ αβ ·OPTLP (By weak duality and feasibility of y)

16-1

16-2 Lecture 16: Multicut in Trees

16.2 Multicut in Trees

In the Mutlicut problem in trees, we are given a tree T = (V,E), edge costs ce ≥ 0 for each edge e ∈ E, and k
pairs of vertices (s1, t1), (s2, t2), . . . (sk, tk). The goal is to find the cheapest F ⊆ E such that all (si, ti) pairs
are disconnected in (V,E −F) (i.e no si − ti path in (V,E −F)). We studied this problem in general graphs in
lecture 13.

As in lecture 13, we introduce variable xe which indicates whether or not edge e ∈ E is cut in the solution.
Let Pi denote the set of edges in the unique path between vertices si and ti in T . The following is a valid LP
relaxation:

minimize:
∑
e∈E

cexe (MT-Primal)

subject to:
∑
e∈Pi

xe ≥ 1, 1 ≤ i ≤ k, (16.5)

x ≥ 0, (16.6)

with corresponding dual

maximize:

k∑
i=1

fi (MT-Dual)

subject to:
∑

i:e∈Pi

fi ≤ ce, for each edge e ∈ E, (16.7)

f ≥ 0. (16.8)

Suppose T is rooted at an arbitrary vertex (Fig. 16.1). For each 1 ≤ i ≤ k, let v(i) be the deepest common
ancestor of si, ti. The following algorithm is a 2-approximation for the Mutlicut problem on trees.

Algorithm 1 Mutlicut on Trees

F ← ∅
f̄ ← 0
Step 1: Initialization Phase
for i in decreasing order of the depth v(i) do
if F ∩ Pi = ∅ then

raise fi until some dual constraint goes tight.
add all e ∈ Pi whose dual constraint goes tight to F .

end if
end for
Step 2: Pruning Phase
for each e ∈ F in reverse order of when it was added to F do
if F − {e} is feasible then
F ← F − {e}.

end if
end for
return F

Theorem 2 cost(F) ≤ 2OPTLP.

Lecture 16: Multicut in Trees 16-3

3s

1v 2v

3v 5v

4v

2s 1s 4s

5s

5t

2s

3t 4t

1t

2t

is

v

jt

js

(j)

e'

v(i)

e

Figure 16.1: Left: Tree T = (V,E) with 5 si, ti pairs. Note that si = tj is allowed for some i 6= j. The deepest common
ancestor of si, ti, denoted as vi, is also depicted. Right: Graphical illustration of proof of Theorem 2.

Proof. Let x̄ be the integer solution

x̄e =

{
1, e ∈ F,
0, e 6∈ F. (16.9)

for the set F returned by the algorithm.

Note: Due to step 1 of the algorithm, x̄i = 1 if
∑

i:e∈Pi
f̄i = ce, so the relaxed complementary slackness condition

(1) holds with α = 1. All that is left to show is that

f̄i > 0⇒ |Pi ∩ F | ≤ 2, (16.10)

i.e.,
∑

e∈Pi
xe ≤ 2. If so, the relaxed complementary slackness condition (2) holds with β = 2.

Claim 1 For each i such that fi > 0, there is at most one edge in F on the si-v(i) path and and most one edge
on the v(i)-ti path.

To see this, suppose the si-v(i) path has two edges e, e′ ∈ F and that e lies bellow e′ (see Fig. 16.1-right). Since
F −{e} is not feasible when it is considered in step 2 of the algorithm (or else we could have removed it), there
is some 1 ≤ j ≤ k such that |Pj ∩ F | = {e}.

Note: v(j) is deeper than e′ and e is deeper than v(j) since e ∈ Pj but e′ 6∈ Pj .

Since f̄i > 0 and v(j) is deeper that v(i), e was not in F just after the iteration in step 1 of the algorithm that
considered j. So, some other ē ∈ Pj was in F after iteration j. Therefore, e is added to F after ē.

The pruning considered e before ē due to reverse order processing. But this contradicts the fact that e was the
only edge in |Pj ∩ F | at this time.

Therefore Claim 1 holds and so does (16.10), concluding the proof.

