16.1 Relaxed Complementary Slackness

In previous lectures, the concept of duality was introduced for linear programs (LPs). A general form of a LP along with its dual is shown bellow:

$$
\begin{array}{rlrl}
\text { minimize: } & \mathbf{c}^{T} \mathbf{x} & (\text { Primal }) & \text { maximize: } \\
\text { subject to: } & \mathbf{A x} \mathbf{y} \\
& \mathbf{x} \geq \mathbf{b}, & (16.1) & \text { subject to: } \mathbf{A}^{T} \mathbf{y} \leq \mathbf{c} \tag{16.2}\\
& \mathbf{x} \geq \mathbf{0} . & (16.2) & \mathbf{y} \geq \mathbf{0}
\end{array}
$$

(Dual)

We also saw a property of optimal primal \& dual LP solutions called complementary slackness. It provides a connection between the optimal solutions of both the primal and the dual problem. Complementary slackness can also be utilized in the context of approximation algorithms.

Theorem 1 (Relaxed Complementary Slackness): Suppose $\overline{\mathbf{x}}$ and $\overline{\mathbf{y}}$ are feasible primal and dual solutions and suppose α and β are values such that
(1) $\bar{x}_{j}=0$ or $\sum_{i} \mathbf{A}_{i j} \bar{y}_{i} \geq c_{j} / \alpha$, for each j,
(2) $\bar{y}_{i}=0$ or $\sum_{j} \mathbf{A}_{i j} \bar{x}_{j} \geq \beta b_{i}$, for each i,
then $\mathbf{c}^{T} \overline{\mathbf{x}} \leq \alpha \beta \cdot O P T_{L P}$ and $\mathbf{b}^{T} \overline{\mathbf{y}} \geq O P T_{L P} / \alpha \beta$.

Proof.

$$
\begin{aligned}
& \mathrm{OPT}_{\mathrm{LP}} \leq \mathbf{c}^{T} \overline{\mathbf{x}}=\sum_{j} c_{j} \bar{x}_{j} \\
& \leq \sum_{j}\left(\alpha \sum_{i} \mathbf{A}_{i j} \bar{y}_{i}\right) \bar{x}_{j} \quad \quad(\text { Condition (1) and } \overline{\mathbf{x}} \geq \mathbf{0}) \\
& =\alpha \sum_{i}\left(\sum_{j} \mathbf{A}_{i j} \bar{x}_{j}\right) \bar{y}_{i} \\
& \leq \alpha \sum_{i} \beta b_{i} \bar{y}_{i} \quad \quad \text { (Condition (2) and } \overline{\mathbf{y}} \geq \mathbf{0} \text {) } \\
& =\alpha \beta \cdot \mathbf{b}^{T} \overline{\mathbf{y}} \\
& \leq \alpha \beta \cdot \mathrm{OPT}_{\mathrm{LP}} \quad \text { (By weak duality and feasibility of } \mathbf{y} \text {) }
\end{aligned}
$$

16.2 Multicut in Trees

In the Mutlicut problem in trees, we are given a tree $T=(V, E)$, edge costs $c_{e} \geq 0$ for each edge $e \in E$, and k pairs of vertices $\left(s_{1}, t_{1}\right),\left(s_{2}, t_{2}\right), \ldots\left(s_{k}, t_{k}\right)$. The goal is to find the cheapest $F \subseteq E$ such that all $\left(s_{i}, t_{i}\right)$ pairs are disconnected in $(V, E-F)$ (i.e no $s_{i}-t_{i}$ path in $(V, E-F)$). We studied this problem in general graphs in lecture 13 .

As in lecture 13, we introduce variable x_{e} which indicates whether or not edge $e \in E$ is cut in the solution. Let P_{i} denote the set of edges in the unique path between vertices s_{i} and t_{i} in T. The following is a valid LP relaxation:

$$
\begin{align*}
\operatorname{minimize} & \sum_{e \in E} c_{e} x_{e} \\
\text { subject to: } & \sum_{e \in P_{i}} x_{e} \geq 1,1 \leq i \leq k \tag{16.5}\\
& \mathbf{x} \geq \mathbf{0} \tag{16.6}
\end{align*}
$$

with corresponding dual

$$
\begin{array}{ll}
\operatorname{maximize}: & \sum_{i=1}^{k} f_{i} \\
\text { subject to: } & \sum_{i: e \in P_{i}} f_{i} \leq c_{e}, \text { for each edge } e \in E, \\
& \mathbf{f} \geq \mathbf{0} \tag{16.8}
\end{array}
$$

Suppose T is rooted at an arbitrary vertex (Fig. 16.1). For each $1 \leq i \leq k$, let $v(i)$ be the deepest common ancestor of s_{i}, t_{i}. The following algorithm is a 2 -approximation for the Mutlicut problem on trees.

```
Algorithm 1 Mutlicut on Trees
    \(F \leftarrow \emptyset\)
    \(\overline{\mathbf{f}} \leftarrow \mathbf{0}\)
    Step 1: Initialization Phase
    for \(i\) in decreasing order of the depth \(v(i)\) do
        if \(F \cap P_{i}=\emptyset\) then
            raise \(f_{i}\) until some dual constraint goes tight.
            add all \(e \in P_{i}\) whose dual constraint goes tight to \(F\).
        end if
    end for
    Step 2: Pruning Phase
    for each \(e \in F\) in reverse order of when it was added to \(F\) do
        if \(F-\{e\}\) is feasible then
            \(F \leftarrow F-\{e\}\).
        end if
    end for
    return \(F\)
```

Theorem $2 \operatorname{cost}(F) \leq 2 O P T_{L P}$.

Figure 16.1: Left: Tree $T=(V, E)$ with $5 s_{i}, t_{i}$ pairs. Note that $s_{i}=t_{j}$ is allowed for some $i \neq j$. The deepest common ancestor of s_{i}, t_{i}, denoted as v_{i}, is also depicted. Right: Graphical illustration of proof of Theorem 2.

Proof. Let $\overline{\mathbf{x}}$ be the integer solution

$$
\bar{x}_{e}= \begin{cases}1, & e \in F, \tag{16.9}\\ 0, & e \notin F\end{cases}
$$

for the set F returned by the algorithm.
Note: Due to step 1 of the algorithm, $\bar{x}_{i}=1$ if $\sum_{i: e \in P_{i}} \bar{f}_{i}=c_{e}$, so the relaxed complementary slackness condition (1) holds with $\alpha=1$. All that is left to show is that

$$
\begin{equation*}
\bar{f}_{i}>0 \Rightarrow\left|P_{i} \cap F\right| \leq 2 \tag{16.10}
\end{equation*}
$$

i.e., $\sum_{e \in P_{i}} x_{e} \leq 2$. If so, the relaxed complementary slackness condition (2) holds with $\beta=2$.

Claim 1 For each i such that $f_{i}>0$, there is at most one edge in F on the $s_{i}-v(i)$ path and and most one edge on the $v(i)-t_{i}$ path.

To see this, suppose the $s_{i}-v(i)$ path has two edges $e, e^{\prime} \in F$ and that e lies bellow e^{\prime} (see Fig. 16.1-right). Since $F-\{e\}$ is not feasible when it is considered in step 2 of the algorithm (or else we could have removed it), there is some $1 \leq j \leq k$ such that $\left|P_{j} \cap F\right|=\{e\}$.

Note: $v(j)$ is deeper than e^{\prime} and e is deeper than $v(j)$ since $e \in P_{j}$ but $e^{\prime} \notin P_{j}$.
Since $\bar{f}_{i}>0$ and $v(j)$ is deeper that $v(i), e$ was not in F just after the iteration in step 1 of the algorithm that considered j. So, some other $\bar{e} \in P_{j}$ was in F after iteration j. Therefore, e is added to F after \bar{e}.

The pruning considered e before \bar{e} due to reverse order processing. But this contradicts the fact that e was the only edge in $\left|P_{j} \cap F\right|$ at this time.
Therefore Claim 1 holds and so does (16.10), concluding the proof.

