CMPUT 675: Approximation Algorithms

Lecture 16 (Oct 10): MULTICUT in Trees

Lecturer: Zachary Friggstad

Scribe: Nikos Fasarakis-Hilliard

16.1 Relaxed Complementary Slackness

In previous lectures, the concept of *duality* was introduced for linear programs (LPs). A general form of a LP along with its dual is shown bellow:

minimize:	$\mathbf{c}^T \mathbf{x}$	(\mathbf{Primal})	maximize: $\mathbf{b}^T \mathbf{y}$	(\mathbf{Dual})
subject to:	$\mathbf{A}\mathbf{x}\geq\mathbf{b},$	(16.1)	subject to: $\mathbf{A}^T \mathbf{y} \leq \mathbf{c}$,	(16.3)
	$\mathbf{x} \geq 0.$	(16.2)	$\mathbf{y} \geq 0.$	(16.4)

We also saw a property of optimal primal & dual LP solutions called *complementary slackness*. It provides a connection between the optimal solutions of both the primal and the dual problem. Complementary slackness can also be utilized in the context of approximation algorithms.

Theorem 1 (Relaxed Complementary Slackness): Suppose $\bar{\mathbf{x}}$ and $\bar{\mathbf{y}}$ are feasible primal and dual solutions and suppose α and β are values such that

- (1) $\bar{x}_j = 0$ or $\sum_i \mathbf{A}_{ij} \bar{y}_i \ge c_j / \alpha$, for each j,
- (2) $\bar{y}_i = 0 \text{ or } \sum_j \mathbf{A}_{ij} \bar{x}_j \ge \beta b_i, \text{ for each } i,$

then $\mathbf{c}^T \bar{\mathbf{x}} \leq \alpha \beta \cdot OPT_{LP}$ and $\mathbf{b}^T \bar{\mathbf{y}} \geq OPT_{LP}/\alpha \beta$.

Proof.

$$OPT_{LP} \leq \mathbf{c}^{T} \bar{\mathbf{x}} = \sum_{j} c_{j} \bar{x}_{j} \qquad (Since \ \bar{\mathbf{x}} \ is \ feasible)$$

$$\leq \sum_{j} \left(\alpha \sum_{i} \mathbf{A}_{ij} \bar{y}_{i} \right) \bar{x}_{j} \qquad (Condition \ (1) \ and \ \bar{\mathbf{x}} \geq \mathbf{0})$$

$$= \alpha \sum_{i} \left(\sum_{j} \mathbf{A}_{ij} \bar{x}_{j} \right) \bar{y}_{i}$$

$$\leq \alpha \sum_{i} \beta b_{i} \bar{y}_{i} \qquad (Condition \ (2) \ and \ \bar{\mathbf{y}} \geq \mathbf{0})$$

$$= \alpha \beta \cdot \mathbf{b}^{T} \bar{\mathbf{y}}$$

$$\leq \alpha \beta \cdot OPT_{LP} \qquad (By \ weak \ duality \ and \ feasibility \ of \ \mathbf{y})$$

Fall 2014

16.2 Multicut in Trees

In the MUTLICUT problem in trees, we are given a tree T = (V, E), edge costs $c_e \ge 0$ for each edge $e \in E$, and k pairs of vertices (s_1, t_1) , (s_2, t_2) , $\dots (s_k, t_k)$. The goal is to find the cheapest $F \subseteq E$ such that all (s_i, t_i) pairs are disconnected in (V, E - F) (i.e no $s_i - t_i$ path in (V, E - F)). We studied this problem in general graphs in lecture 13.

As in lecture 13, we introduce variable x_e which indicates whether or not edge $e \in E$ is cut in the solution. Let P_i denote the set of edges in the unique path between vertices s_i and t_i in T. The following is a valid LP relaxation:

minimize:
$$\sum_{e \in E} c_e x_e$$
 (MT-Primal)

subject to:
$$\sum_{e \in P_i} x_e \ge 1, \ 1 \le i \le k, \tag{16.5}$$

$$\mathbf{x} \ge \mathbf{0},\tag{16.6}$$

with corresponding dual

maximize:
$$\sum_{i=1}^{k} f_i$$
 (MT-Dual)

subject to:
$$\sum_{i:e\in P_i} f_i \le c_e$$
, for each edge $e \in E$, (16.7)

$$\mathbf{f} \ge \mathbf{0}.\tag{16.8}$$

Suppose T is rooted at an arbitrary vertex (Fig. 16.1). For each $1 \le i \le k$, let v(i) be the deepest common ancestor of s_i, t_i . The following algorithm is a 2-approximation for the MUTLICUT problem on trees.

Algorithm 1 MUTLICUT on Trees

 $F \leftarrow \emptyset$ $\bar{\mathbf{f}} \gets \mathbf{0}$ **Step 1**: Initialization Phase for *i* in decreasing order of the depth v(i) do if $F \cap P_i = \emptyset$ then raise f_i until some dual constraint goes tight. add all $e \in P_i$ whose dual constraint goes tight to F. end if end for Step 2: Pruning Phase for each $e \in F$ in *reverse* order of when it was added to F do if $F - \{e\}$ is feasible then $F \leftarrow F - \{e\}.$ end if end for return F

Theorem 2 $cost(F) \leq 2OPT_{LP}$.

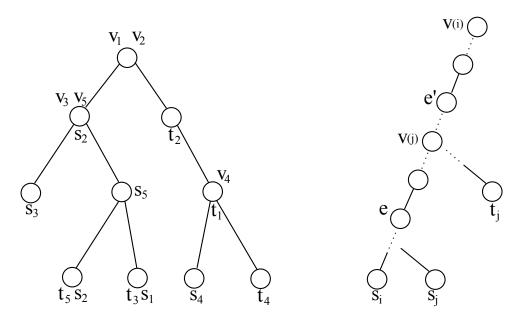


Figure 16.1: Left: Tree T = (V, E) with 5 s_i, t_i pairs. Note that $s_i = t_j$ is allowed for some $i \neq j$. The deepest common ancestor of s_i, t_i , denoted as v_i , is also depicted. Right: Graphical illustration of proof of Theorem 2.

Proof. Let $\bar{\mathbf{x}}$ be the integer solution

$$\bar{x}_e = \begin{cases} 1, & e \in F, \\ 0, & e \notin F. \end{cases}$$
(16.9)

for the set F returned by the algorithm.

Note: Due to step 1 of the algorithm, $\bar{x}_i = 1$ if $\sum_{i:e \in P_i} \bar{f}_i = c_e$, so the relaxed complementary slackness condition (1) holds with $\alpha = 1$. All that is left to show is that

$$\bar{f}_i > 0 \Rightarrow |P_i \cap F| \le 2, \tag{16.10}$$

i.e., $\sum_{e \in P_i} x_e \leq 2$. If so, the relaxed complementary slackness condition (2) holds with $\beta = 2$.

Claim 1 For each *i* such that $f_i > 0$, there is at most one edge in *F* on the s_i -v(i) path and and most one edge on the v(i)- t_i path.

To see this, suppose the s_i -v(i) path has two edges $e, e' \in F$ and that e lies below e' (see Fig. 16.1-right). Since $F - \{e\}$ is not feasible when it is considered in step 2 of the algorithm (or else we could have removed it), there is some $1 \leq j \leq k$ such that $|P_j \cap F| = \{e\}$.

Note: v(j) is deeper than e' and e is deeper than v(j) since $e \in P_j$ but $e' \notin P_j$.

Since $\bar{f}_i > 0$ and v(j) is deeper that v(i), e was not in F just after the iteration in step 1 of the algorithm that considered j. So, some other $\bar{e} \in P_j$ was in F after iteration j. Therefore, e is added to F after \bar{e} .

The pruning considered e before \bar{e} due to reverse order processing. But this contradicts the fact that e was the only edge in $|P_i \cap F|$ at this time.

Therefore Claim 1 holds and so does (16.10), concluding the proof.