
CMPUT 675: Approximation Algorithms Fall 2014

Lecture 13 (Oct 1): Multicut (Part 1)
Lecturer: Zachary Friggstad Scribe: Chris Martin

13.1 Multicut

The Multicut problem given as follows. We are given an undirected graph G = (V,E) with edge costs ce ≥ 0,
e ∈ E, and k pairs of nodes (s1, t1), · · · (sk, tk) where si 6= ti for all i. The goal is to find the cheapest set of
edges F ⊆ E such that all (si, ti) pairs are disconnected in the graph (V,E −F) (i.e. there is no si − ti path in
the new graph). The problem can be solved in polynomial time when k = 1. For example, compute a maximum
s1− t1 flow with edge capacities ce and find the set S of all vertices reachable from s1 in the residual graph; the
set δ(S) is a minimum-cost s1 − t1 cut. For larger values of k, the problem is NP-hard.

This problem can be formulated as an integer program as follows. Let the binary variables xe ∈ {0, 1} denote
whether edges e ∈ E are cut, and let Pi denote the set of all si − ti paths. Note that the size of Pi can be
exponential in the worst case. The integer program is:

minimize:
∑
e∈E

ce · xe (MC-IP)

subject to:
∑
e∈P

xe ≥ 1, for all 1 ≤ i ≤ k, P ∈ Pi (13.1)

xe ∈ {0, 1}, for all e ∈ E. (13.2)

Constraint 13.1 ensures that each si−ti path has at least one edge cut, while the minimization objective function
ensures that the minimum cost cut is obtained. The LP relaxation of this problem simply allows the variables
xe to be within the range [0,1]:

minimize:
∑
e∈E

ce · xe (MC-LP)

subject to:
∑
e∈P

xe ≥ 1, for all 1 ≤ i ≤ k, P ∈ Pi (13.3)

xe ∈ [0, 1], for all e ∈ E. (13.4)

Since the MC-LP problem has exponentially many constraints, we cannot just use any polynomial-time LP
solver to efficiently compute an optimum solution. Instead, we must use a different approach.

13.2 Separation Oracles

Definition 1 Let P be the set of feasible solutions to an LP on n variables. A separation oracle for P is an
algorithm that takes as input a potential LP solution x̄ ∈ Qn and in time poly(n, bit complexity of x̄) either:

13-1

13-2 Lecture 13: Multicut (Part 1)

1. Correctly determines x̄ ∈ P, or

2. Produces a constraint separating x̄ from P (i.e. a constraint that x̄ violates).

For example, a separation oracle for MC-LP is given by Algorithm 1.

Algorithm 1 Oracle for MC-LP

Input: Undirected graph G = (V,E), LP constraints P , and potential LP solution x̄.
Output: Accepts or provides a constraint that x̄ violates.

1: Check x̄ ∈ [0, 1]E

2: G′ ← the graph G with edge lengths x̄
3: for each 1 ≤ i ≤ k do
4: if the shortest si − ti path P has length < 1 then
5: return The constraint corresponding to P
6: end if
7: end for
8: return ACCEPT

This algorithm is correct: if the shortest si− ti path has length ≥ 1 then all constraints corresponding to paths
from si to ti must be satisfied since they are all longer. If the shortest si − ti path has length < 1 then such a
shortest path P corresponds to a violated constraint.

It turns out that having such a separation oracle is all that is needed for solving a linear program in polynomial
time.

Theorem 1 A linear program min{cTx : A · x ≥ b, x ≥ 0} with maximum bit complexity ∆ and x ∈ Qn can be
solved in time poly(n,∆) if the feasible solutions admit a separation oracle. Furthermore, if the linear program
has an optimal solution then an extreme point optimum solution is returned.

The algorithm is known as the Ellipsoid method. A full proof of this theorem, including the bit complexity
analysis, can be found in the book Combinatorial Optimization: Theory and Algorithms by Korte and Vy-
gen [KV00].

Note that the running time does not depend on the number of constraints. Theorem 1 says that it is enough to
efficiently separate over the constraints in order to solve a linear program in polynomial time. Therefore, the
MC-LP problem can be solved in polynomial time using the oracle given in Algorithm 1.

13.3 Solving Multicut Using MC-LP (Part 1)

The algorithm for converting a solution to MC-LP into a solution for Multicut was given and proven correct
in the lecture. However, the proofs of the integrality gap in Theorem 2 and the crucial Lemma 2 were delayed
until the next lecture, so they will be assumed true for the time being.

Assume that an optimal solution x∗ to the MC-LP problem has been computed. For vertices u, v ∈ V , let
d(u, v) be the shortest-path distance from u to v in G where each edge e ∈ E has length x∗e. Note that d satisfies
the triangle inequality since it is a shortest path metric.

Definition 2 Consider a subgraph G′ of G, a vertex v in G′ and a radius r ≥ 0. The ball BG′(v, r) is the set
of all vertices u of G′ such that d(u, v) ≤ r.

Lecture 13: Multicut (Part 1) 13-3

Note that the balls BG′(v, r) are defined with respect to the distances d(u, v) in the original graph G. This is
ok.

We note the following properties of these balls.

Lemma 1 For any subgraph G′ of G, any 1 ≤ i ≤ k such that si, ti both lie in G′, any vertex v of G′, and any
a radius r ∈ [0, 1/2), |BG′(v, r) ∩ {si, ti}| ≤ 1.

Proof. If both si, ti ∈ BG′(v, r) then by the triangle inequality d(si, ti) ≤ d(si, v) + d(v, ti) ≤ r + r < 1, again
contradicting Constraints (13.3).

Definition 3 Let G′ be a subgraph of G, v be a vertex of G′, and, r ≥ 0, and x∗ be the optimal solution to
MC-LP. The volume VG′(v, r) is given by:

VG′(v, r) =
OPTLP

k
+

∑
e=(u,w)

u,w∈BG′ (v,r)

ce · x∗e +
∑

e=(u,w)∈G′

u∈BG′ (v,r)
w/∈BG′ (v,r)

ce · (r − d(v, u)).

The term OPTLP/k might seem a bit arbitrary, but it is carefully chosen to make the analysis of the integrality
gap (next lecture) work correctly. It will be discussed in a bit more detail then. The second term is the
contribution to the objective function of all edges completely contained in the ball BG′(v, r). For an edge
e = (u,w) contributing to the third term, the value r− d(v, u) ∈ [0, x∗e) (so if r is increased to r′ := d(u, v) + x∗e
then surely w ∈ B′G(v, r′)).

Recall the standard notation that for a subset of vertices S ⊆ V of a graph G, δG(S) denotes the edges in G
that join a vertex in S to a vertex in V − S. Using these definitions, the process to convert a MC-LP solution
to a Multicut solution is given as Algorithm 2.

Algorithm 2 Conversion to Multicut

Input: Undirected graph G = (V,E).
Output: The cut F .

1: G′ ← G
2: x∗ ← the optimum solution to MC-LP
3: F ← ∅
4: while some (si, ti) pair is connected in G′ do
5: Let r ∈ [0, 12) be as promised by Lemma 2 (below).
6: F ← F ∪ δG′(BG′(si, r))
7: Remove the vertices BG′(si, r) and their incident incident edges from G′.
8: end while
9: return F

Claim 1 The result F computed by Algorithm 2 separates all si − ti pairs.

Proof. First, note that for any subgraph G′ considered in any iteration with vertex set, say, δG(S) ⊆ F . This
is easy to prove by induction.

Consider any pair (sj , tj). Since the algorithm terminates only when there is no (si, ti) pair left in the subgraph
G′ then there was some iteration where at least one of the two nodes was in the ball that was removed. Consider
the earliest iteration where one of these nodes was in such a ball and suppose this vertex is sj (without loss of

13-4 Lecture 13: Multicut (Part 1)

generality). Say that the pair (si, ti) is the pair considered in this iteration (it may or may not be that i = j)
and now say that G′ is subgraph of G in this iteration just before the ball BG′(si, r) is removed. That is, we
are assuming sj ∈ BG′(si, r). By Lemma 1, we cannot have tj ∈ BG′(si, r).

Now consider any sj − tj path P in the original graph. If P is not contained entirely in the graph G′ just before
BG′(si, r) is removed then the observation in the first sentence shows that P already contained some edge in F .
If P is contained entirely in this subgraph G′, then because it starts in BG′(si, r) and ends at tj 6∈ BG′(si, r) it
must use some edge in δ(BG′(si, r)). This edge is added to F .

In either case, P contains an edge from F . Since this is true for all sj− tj paths, the pair (sj , tj) is disconnected
in the graph (V,E − F).

The remaining Theorem and Lemma will be stated here but not proven until the next lecture.

Lemma 2 Consider an iteration of the algorithm, let G′ be the current graph in that iteration, and let v be any
vertex of G′. There exists some r ∈ [0, 1/2) such that c(δG′(BG′(v, r))) ≤ 2 · ln(k + 1) · VG′(v, r).

Theorem 2 The integrality gap of MC-LP is at most 4 · ln(k + 1).

References

KV00 B. Korte and J. Vygen, Combinatorial Optimization: Theory and Algorithms, Springer-Verlag, Berlin,
2000.

