Lecture 29 (Nov 17 \& 19): Bounded-Degree Spanning Trees

29.1 The Spanning Tree Polytope

Let $G=(V, E)$ be an undirected graph. Consider the following polytope over variables $x_{e}, e \in E$. For a set $S \subseteq V$ we let $E(S)=\{(u, v) \in E: u, v \in S\}$ and for a set $F \subseteq E$ we let $x(F)=\sum_{e \in F} x_{e}$.

$$
\begin{align*}
x(E(S)) & \leq|S|-1 \quad \text { for each } S \subseteq V,|S| \geq 2 \\
x(E) & =|V|-1 \tag{LP-Span}\\
x & \geq 0
\end{align*}
$$

We show how to separate over the constraints of this polytope and that the extreme points are precisely the $\{0,1\}$-integer solutions corresponding to spanning trees.

Lemma 1 There is a polynomial-time separation oracle for the constraints of (LP-Span).

Proof. Let \bar{x} be a proposed solution such that $\bar{x} \geq 0$ and $\bar{x}(E(V))=|V|-1$ (i.e. we checked them already).
Try all pairs of vertices $u, v \in V$. The idea is that we are guessing $u \in S, v \notin S$ for some set $S \subseteq V$ whose corresponding LP constraint is violated. Consider the directed graph $H(v)=\left(V, E^{\prime}\right)$ with edge capacities $z_{e}, e \in E^{\prime}$ where E^{\prime} consists of the following directed edges.

- For each $e=(a, b)$ edge in the original graph G, add both directed copies $(a, b),(b, a)$ to E^{\prime} each and set $z_{(a, b)}=z_{(b, a)}=\bar{x}_{e} / 2$.
- For each $a \in V-\{u, v\}$, add the $\operatorname{arc}(a, v)$ with capacity 1 and the arc (u, a) with capacity $\bar{x}(\delta(a))$.

Consider any $u-v$ cut S in H. The capacity of arcs exiting S is

$$
z\left(\delta^{o u t}(S)\right)=|S|-1+\sum_{a \in V-S} \bar{x}(\delta(a)) / 2+\sum_{e \in \delta(S)} \bar{x}_{e} / 2 .
$$

The latter two sums count each $e \in E(V)-E(S)$ twice: if $e \in E(V-S)$ then it will be counted twice in the first sum and if $e \in \delta(S)$ it will be counted exactly once in the first sum and exactly once in the second. Therefore,

$$
z\left(\delta^{o u t}(S)\right)=|S|-1+\bar{x}(E(V))-\bar{x}(E(S))=(|V|-1)+(|S|-1)-\bar{x}(E(S)) .
$$

Therefore, the minimum-capacity $u-v$ cut in H has capacity $<|V|-1$ if and only if some violated constraint contains u and excludes v. Running this over all pairs $u, v \in V$ will find a violated constraint if there is any.

The proof used $n \cdot(n-1)$ min-cut computations. It can be reduced to at most $2 n-2$ by only fixing one particular u, guessing the corresponding $v \neq u$, and trying to find the minimum $u-v$ and $v-u$ cuts in the corresponding graphs.

Lemma 2 The feasible integer solutions are precisely the $\{0,1\}$ solutions corresponding to spanning trees of G.

Proof. Let \bar{x} be a feasible integer solution. Note that $\bar{x}_{(u, v)} \leq 1$ for each $(u, v) \in E$ because $x(E(S)) \leq 1$ is satisfied for $S=\{u, v\}$. Let $T=\left\{e: \bar{x}_{e}=1\right\}$.

We have $|T|=\bar{x}(E(V))=|V|-1$. Furthermore, T cannot contain a cycle because if T contained a cycle with vertex set C, then we must have $\bar{x}(E(C)) \geq n$ which contradicts feasibility of \bar{x}. Any graph on n nodes that has $n-1$ edges and does not contain a cycle is a spanning tree, so T is a spanning tree.

Conversely, any spanning tree T contains exactly $n-1$ edges and for each $S \subseteq V$, at most $|S|-1$ edges of T have both endpoints in S (otherwise there is a cycle contained in S) so the $\{0,1\}$ integer point corresponding to T is a point in (LP-Span).

29.1.1 Integrality of Extreme Points

Before proving that extreme points are integral, we introduce more important notation and concepts.
For a set of edges $F \subseteq E$, let $\chi(F) \in \mathbb{R}^{E}$ be the $\{0,1\}$ indicator vector for F. That is, $\chi(F)_{e}=1$ for $e \in F$ and $\chi(F)_{e}=0$ for $e \notin F$.

Say any two sets $A, B \subseteq V$ cross if $A \cap B \neq \emptyset$ but neither is a subset of the other. A family \mathcal{L} of subsets of V is called laminar no two of its subsets cross, i.e. for any $A, B \in \mathcal{L}$ we have either $A \cap B=\emptyset, A \subseteq B$ or $B \subseteq A$.

Lemma 3 Let \mathcal{L} be a laminar family of subsets of V such that $|A| \geq 2$ for any $A \in \mathcal{L}$. Then $|\mathcal{L}| \leq|V|-1$.

Proof. Assignment 5.

Theorem 1 Any extreme point of (LP-Span) is integral.

Proof. Let \bar{x} be an extreme point. It is easy to see that \bar{x} is an extreme point if and only if the corresponding solution we get after deleting $e \in E$ with $\bar{x}_{e}=0$ is an extreme point, so we assume $\bar{x}_{e}>0$ for each $e \in E$.

We show that in this case it must be that $|E| \leq|V|-1$. If so, then we are done because:

- $\bar{x}(E(V))=|V|-1$
- $\bar{x}_{e} \leq 1$ for each $e \in E$

So if $|E| \leq|V|-1$ then we must have $\bar{x}_{e}=1$ for each $e \in E$.
By the properties of extreme points, $|E|$ is equal to the rank of the collection of vectors $\mathcal{M}=\{\chi(E(S))$: $\bar{x}(E(S))=|S|-1\}$. We show that there is a laminar family \mathcal{L} consisting only of S with $|S| \geq 2$ and $\bar{x}(S)=|S|-1$ such that the vectors $\chi(E(S)), S \in \mathcal{L}$ form a basis for the space spanned by all tight constraints (i.e. the space spanned by $\mathcal{M})$. If so, then by Lemma 3 we have

$$
|E|=\operatorname{rank}(M)=\operatorname{rank}(\{\chi(E(S)): S \in \mathcal{L}\})=|\mathcal{L}| \leq|V|-1
$$

which completes the proof.
Let \mathcal{L} be the largest laminar collection of subsets of V such that $\chi(E(S)), S \in \mathcal{L}$ are linearly independent. If $|\mathcal{L}|<|E|$ then there is some $R \subseteq V,|R| \geq 2$ such that $\bar{x}(R)=|R|-1$ but $\chi(R) \notin \operatorname{span}\{\chi(E(S)): S \in \mathcal{L}\}$.

Because R cannot be added to \mathcal{L}, we know that R crosses $S \in \mathcal{L}$. Choose such an R that crosses the fewest sets in \mathcal{L} and let S be any set in \mathcal{L} such that R and S cross.

Let F^{\prime} denote the edges with one endpoint in $S-R$ and the other in $R-S$. Then we have

$$
\begin{array}{rlrl}
|R|-1+|S|-1 & =\bar{x}(E(R))+\bar{x}(E(S)) & & \text { (the corresponding constraints are tight) } \\
& =\bar{x}(E(R \cap S))+\bar{x}(E(R \cup S))-\bar{x}\left(F^{\prime}\right) & \text { (count how many times each edge contributes to each side) } \\
& \leq|R \cap S|-1+|R \cup S|-1 & & (\bar{x} \text { is feasible) } \\
& =|R|-1+|S|-1 &
\end{array}
$$

Therefore all inequalities hold with equality. In particular:

- $\bar{x}(E(S \cup R))=|S \cup R|-1$
- $\bar{x}(E(S \cap R))=|S \cap R|-1$
- $\bar{x}\left(F^{\prime}\right)=0$
(if $|S \cap R|=1$ then just ignore any term involving it and the proof works fine)
Because $\bar{x}_{e}>0$ for each $e \in E$, then $F^{\prime}=\emptyset$ which means $\chi(E(R))+\chi(E(S))=\chi(E(R \cup S))+\chi(E(R \cap S))$. Both $R \cup S$ and $R \cap S$ can only cross sets in \mathcal{L} that R crossed. Since both do not cross S, then both cross fewer sets in \mathcal{L} than R.

Finally, it cannot be that both $\chi(E(R \cup S)), \chi(E(R \cap S)) \in \operatorname{span}\left\{\chi\left(E\left(S^{\prime}\right)\right): S^{\prime} \in \mathcal{L}\right\}$, otherwise $\chi(E(R))=$ $\chi(E(R \cup S))+\chi(E(R \cap S))-\chi(E(S)) \in \operatorname{span}\left\{\chi\left(E\left(S^{\prime}\right)\right): S^{\prime} \in \mathcal{L}\right\}$. Therefore, at least one of $R^{\prime} \in\{R \cap S, R \cup S\}$ is such that $\chi\left(E\left(R^{\prime}\right)\right) \notin \operatorname{span}\left\{\chi\left(E\left(S^{\prime}\right)\right): S^{\prime} \in \mathcal{L}\right\}, R^{\prime}$ crosses fewer sets of \mathcal{L} than R, and the constraint for R^{\prime} is tight. This contradicts our choice of R.

29.2 The Minimum Bounded-Degree Spanning Tree Problem

Now we tackle the main problem. Given a graph $G=(V, E)$ with edge costs $c_{e} \geq 0, e \in E$ and integer vertex bound $B_{v} \geq 1, v \in V$, the goal is to find the cheapest spanning tree T of G such that $|\delta(v) \cap T| \leq B_{v}$ for each $v \in V$. It is NP-hard to determine if there is a feasible solution even when $B_{v}=2$ for all $v \in V$ because this is precisely the problem of determining if G has a Hamiltonian path.

We will see the next best thing: a polynomial-time algorithm that either (correctly) states there is no such tree or it returns a spanning tree T with $|\delta(v) \cap T| \leq B_{v}+1$. Furthermore, if there is in fact a spanning tree satisfying the original degree bounds then the cost of the returned tree T is at most $O P T$. We are not losing anything in the objective function value here, just the degree bounds!

We consider the following linear programming relaxation. Here, $x(\delta(v))$ denotes $\sum_{e \in \delta(v)} x_{e}$. The relaxation is slightly more general in that we only have variables for a subset of edges $F \subseteq E$ and degree constraints for a subset of vertices $W \subseteq V$.

$$
\begin{array}{rlll}
\text { minimize : } & \sum_{e \in F} c_{e} \cdot x_{e} & & \\
\text { subject to : } & x(F(S)) & \leq|S|-1 \quad \text { for each } S \subseteq V,|S| \geq 2 \\
& x(F(V)) & =|V|-1 & \\
& x(\delta(v)) & \leq B_{v} \quad \text { for each } v \in W &
\end{array} \quad \text { (LP-BDST }(W, F) \text {) }
$$

The algorithm we consider is an iterative relaxation algorithm. It iterates the process of solving the LP, deleting edges with x-value 0 , and dropping some constraints until the set of feasible solutions is given by the normal spanning tree LP (LP-Span).

```
Algorithm 1 Minimum Bounded-Degree Spanning Tree Approximation
    if (LP-BDST \((V, E))\) is infeasible then
        return no solution
    end if
    \(F \leftarrow E\)
    \(W \leftarrow V\)
    while \(W \neq \emptyset\) do
        Solve (LP-BDST( \(W, F)\) ) to get an optimum extreme point \(\bar{x}\)
        \(F \leftarrow\left\{e \in F: \bar{x}_{e}>0\right\}\)
        \(W \leftarrow\left\{v \in V:|\delta(v) \cap F| \geq B_{v}+2\right\}\)
    end while
    return An optimum extreme point solution to (LP-BDST \((\emptyset, F)\) )
```

If Algorithm 1 returns no solution then clearly there is none as the $\{0,1\}$ solution corresponding to the optimal degree-bounded spanning tree would be feasible. Next, since the main loop only drops constraints and edges with \bar{x}-value 0 then the cost $\sum_{e \in F} c_{e} \cdot \bar{x}_{e}$ does not increase over the iterations. Since we only drop degree constraints for vertices v with $|\delta(v) \cap F| \leq B_{v}+1$, then any resulting integer solution must satisfy this slightly relaxed degree bound. Finally, the feasible solutions of (LP-BDST (\emptyset, F)) are precisely the feasible solutions of (LP-Span) for the graph $G=(V, F)$.

By Theorem 1, the fact that the optimum solution LP solution does not increase over the iterations, and the fact that $|\delta(v) \cap F| \leq B_{v}+1$, the last step returns an integer solution corresponding to a spanning tree with cost at most the optimum of (LP-BDST $(V, E))$ that violates each degree bound by at most +1 .

All that is left to prove is that each iteration of the algorithm makes progress.

Theorem 2 Consider an extreme point \bar{x} for (LP-BDST $(W, F))$ such that $\bar{x}_{e}>0$ for each $e \in F$. If $W \neq \emptyset$, then there is some $v \in W$ such that $|\delta(v) \cap F| \leq B_{v}+1$.

Proof. By way of contradiction, suppose $|\delta(v) \cap F| \geq B_{v}+2$ for every $v \in W$. Using essentially the same arguments as in the proof of Theorem 1, we find a laminar collection \mathcal{L} of subsets of V such $|S| \geq 2$ for each $S \in \mathcal{L}$ and such that the corresponding vectors form a basis for $\{\chi(E(S)): \bar{x}(E(S))=|S|-1\}$. Then we find $U \subseteq W$ whose corresponding degree constraints are tight such that the vectors

$$
\begin{equation*}
\{\chi(F(S)): S \in \mathcal{L}\} \cup\{\chi(\delta(v)): v \in U\} \tag{29.1}
\end{equation*}
$$

form a basis for the space spanned by tight constraints. This can be done by greedily adding vertices $u \in W$ such that $\bar{x}(\delta(u))=B_{v}$ to U while ensuring the vectors (29.1) remain linearly independent.

Note that have $|\mathcal{L}|+|U|=|F|$ by the characterization of extreme points. Now, if $U=\emptyset$ then \bar{x} is an extreme point of (LP-Span) for the graph $G=(V, F)$, so it is integral already by Theorem 1 and it is clear that integer solutions to (LP-BDST $(W, F))$ must satisfy the degree bounds for nodes in W without any violation. So, we now assume $U \neq \emptyset$.

We will assign a charge of 1 to each $e \in F$ and distribute some of this charge to sets in \mathcal{L} and vertices in W. We will count the amount of charge that is redistributed in two ways. On one hand, we see that strictly less than $|F|$ units of charge is sent to these sets. On the other hand, we will see that at least $|F|$ units of charge were collected by \mathcal{L} and W. This is a contradiction, so it must be that some $v \in W$ satisfies $|\delta(v) \cap F| \leq B_{v}+1$.

For each $e=(u, v) \in F$, send \bar{x}_{e} units of charge to the smallest $S \in \mathcal{L}$ with $u, v \in S$ (if there is none, then do not distribute this charge). Also, send $\left(1-\bar{x}_{e}\right) / 2$ units of charge to each of u and v that lies in U. Note that e sends out at most 1 unit of charge, so the total charge sent out by all edges is at most $|F|$ (we will soon see it is, in fact, strictly less than $|F|$).

Next we show that each $v \in U$ and each $S \in \mathcal{L}$ collect at least one unit of charge. To start, consider some $v \in U$. Then the charge that v collects is precisely

$$
\sum_{e \in \delta(v) \cap F} \frac{1-\bar{x}_{e}}{2}=\frac{|\delta(v) \cap F|-B_{v}}{2} \geq 1
$$

where the equality is because the degree constraint for $u \in W$ is tight and the inequality is because we are assuming $|\delta(v) \cap F| \geq B_{v}+2$.

Now consider some $S \in \mathcal{L}$. Let $R_{1}, R_{2}, \ldots, R_{k}$ denote the maximal subsets of S in \mathcal{L}. That is, each $R_{i} \in \mathcal{L}$ is a proper subset of S and no other $R^{\prime} \in \mathcal{L}$ satisfies $R_{i} \subsetneq R^{\prime} \subsetneq S$. Then the total charge collected by \mathcal{L} is precisely

$$
\bar{x}(F(S))-\sum_{i=1}^{k} \bar{x}\left(F\left(R_{i}\right)\right)=(|S|-1)-\sum_{i=1}^{k}\left(\left|R_{i}\right|-1\right)
$$

We have $\left|R_{1}\right|+\ldots+\left|R_{k}\right| \leq|S|$ so the last expression is a nonnegative integer. Furthermore, we have $\chi(F(S)) \neq$ $\sum_{i} \chi\left(F\left(R_{i}\right)\right.$) (by linear independence) so there is some edge $e \in F$ in $F(S)$ but not in any $F\left(R_{i}\right)$. Thus, S collects a positive integer amount of charge, meaning it collects at least 1 charge.

So far, we have shown that the edges distribute at most $|F|$ units of charge and that \mathcal{L} and U collectively receive at least $|\mathcal{L}|+|U|=|F|$ units of charge. We will show that some edge did not distribute exactly 1 unit of charge, so in fact the total charge that was distributed is strictly less than $|F|$, a contradiction.

First, two simple cases:

- If $V \notin \mathcal{L}$ then there is some $e \in F$ that is not contained in any $S \in \mathcal{L}$ so the charge $\bar{x}_{e}>0$ is not distributed.
- If there is some vertex $v \in V-U$ such that $\bar{x}_{e}<1$ for some $e \in \delta(v) \cap F$, then the charge $\left(1-\bar{x}_{e}\right) / 2>0$ is not distributed.

Now assume that none of these happen. We also note that if $\bar{x}_{e}=1$ for some $e=(u, v) \in F$ then $\chi(E(\{u, v\})) \in$ $\operatorname{span}\{\chi(E(S)): S \in \mathcal{L}\}$ because the constraint $\bar{x}(E(\{u, v\})) \leq 1$ is tight and we chose \mathcal{L} so that the associated vectors span $\{\chi(E(S)): \bar{x}(E(S))=|E|-1\}$.

Putting all of this together, we have

$$
2 \cdot \chi(E(V))=\sum_{v \in U} \chi(\delta(v))+\sum_{v \in V-U} \chi(\delta(v))=\sum_{v \in U} \chi(\delta(v))+\sum_{v \in V-U} \sum_{e \in \delta(v)} \chi(\{e\}) .
$$

We just argued that each vector $\chi(\{e\})$ in the last sum is spanned by $\{\chi(E(S)): S \in \mathcal{L}\}$. Furthermore, the first sum in the last expression is nonzero because $U \neq \emptyset$. Therefore, we have expressed a non-zero linear combination of the vectors $\{\chi(\delta(v)): v \in U\}$ by a linear combination of the vectors in $\{\chi(E(S)): S \in \mathcal{L}\}$, which contradicts the fact that the vectors in (29.1) are linearly independent.

The spanning tree polytope (LP-Span) was presented and proved to be integral by Edmonds [E71]. Singh and Lau described the +1 approximation for the Minimum Degree Bounded Spanning Tree problem [SL11], which improved over the +2 approximation by Goemans [G06]. Earlier work had considered the unweighted problem: given degree bounds B_{v} determine if there is any spanning tree with these bounds. An algorithm by Fürer and Raghavachari [FR94] will either find some spanning tree where the degree of each node v is at most $B_{v}+1$ or else determine there is no such tree.

References

E71 J. Edmonds, Matroids and the greedy algorithm, Mathematical Programming, 1:125-136, 1971.
FR94 M. Fürer and B. Raghavachari, Approximating the minimum-degree steiner tree to within one of optimal, Journal of Algorithms, 17(3):409-423, 1994.

SL11 M. Singh and L. C. Lau, Approximating minimum bounded degree spanning trees to within one of optimal, In Proceedings of STOC, 2007.

