CMPUT 675: Approximation Algorithms

Lecture 29 (Nov 17 & 19): BOUNDED-DEGREE SPANNING TREES Scribe: Zachary Friggstad

Lecturer: Zachary Friggstad

29.1The Spanning Tree Polytope

Let G = (V, E) be an undirected graph. Consider the following polytope over variables $x_e, e \in E$. For a set $S \subseteq V$ we let $E(S) = \{(u, v) \in E : u, v \in S\}$ and for a set $F \subseteq E$ we let $x(F) = \sum_{e \in F} x_e$.

$$\begin{array}{rcl} x(E(S)) &\leq & |S|-1 & \text{for each } S \subseteq V, |S| \geq 2 \\ x(E) &= & |V|-1 \\ x &\geq & 0 \end{array} \tag{LP-Span}$$

We show how to separate over the constraints of this polytope and that the extreme points are precisely the $\{0,1\}$ -integer solutions corresponding to spanning trees.

Lemma 1 There is a polynomial-time separation oracle for the constraints of (LP-Span).

Proof. Let \overline{x} be a proposed solution such that $\overline{x} > 0$ and $\overline{x}(E(V)) = |V| - 1$ (i.e. we checked them already).

Try all pairs of vertices $u, v \in V$. The idea is that we are guessing $u \in S, v \notin S$ for some set $S \subseteq V$ whose corresponding LP constraint is violated. Consider the directed graph H(v) = (V, E') with edge capacities $z_e, e \in E'$ where E' consists of the following directed edges.

- For each e = (a, b) edge in the original graph G, add both directed copies (a, b), (b, a) to E' each and set $z_{(a,b)} = z_{(b,a)} = \overline{x}_e/2.$
- For each $a \in V \{u, v\}$, add the arc (a, v) with capacity 1 and the arc (u, a) with capacity $\overline{x}(\delta(a))$.

Consider any u - v cut S in H. The capacity of arcs exiting S is

$$z(\delta^{out}(S)) = |S| - 1 + \sum_{a \in V-S} \overline{x}(\delta(a))/2 + \sum_{e \in \delta(S)} \overline{x}_e/2.$$

The latter two sums count each $e \in E(V) - E(S)$ twice: if $e \in E(V-S)$ then it will be counted twice in the first sum and if $e \in \delta(S)$ it will be counted exactly once in the first sum and exactly once in the second. Therefore,

$$z(\delta^{out}(S)) = |S| - 1 + \overline{x}(E(V)) - \overline{x}(E(S)) = (|V| - 1) + (|S| - 1) - \overline{x}(E(S)).$$

Therefore, the minimum-capacity u - v cut in H has capacity < |V| - 1 if and only if some violated constraint contains u and excludes v. Running this over all pairs $u, v \in V$ will find a violated constraint if there is any.

The proof used $n \cdot (n-1)$ min-cut computations. It can be reduced to at most 2n-2 by only fixing one particular u, guessing the corresponding $v \neq u$, and trying to find the minimum u - v and v - u cuts in the corresponding graphs.

Fall 2014

Lemma 2 The feasible integer solutions are precisely the $\{0,1\}$ solutions corresponding to spanning trees of G.

Proof. Let \overline{x} be a feasible integer solution. Note that $\overline{x}_{(u,v)} \leq 1$ for each $(u,v) \in E$ because $x(E(S)) \leq 1$ is satisfied for $S = \{u, v\}$. Let $T = \{e : \overline{x}_e = 1\}$.

We have $|T| = \overline{x}(E(V)) = |V| - 1$. Furthermore, T cannot contain a cycle because if T contained a cycle with vertex set C, then we must have $\overline{x}(E(C)) \ge n$ which contradicts feasibility of \overline{x} . Any graph on n nodes that has n - 1 edges and does not contain a cycle is a spanning tree, so T is a spanning tree.

Conversely, any spanning tree T contains exactly n-1 edges and for each $S \subseteq V$, at most |S|-1 edges of T have both endpoints in S (otherwise there is a cycle contained in S) so the $\{0,1\}$ integer point corresponding to T is a point in (**LP-Span**).

29.1.1 Integrality of Extreme Points

Before proving that extreme points are integral, we introduce more important notation and concepts.

For a set of edges $F \subseteq E$, let $\chi(F) \in \mathbb{R}^E$ be the $\{0,1\}$ indicator vector for F. That is, $\chi(F)_e = 1$ for $e \in F$ and $\chi(F)_e = 0$ for $e \notin F$.

Say any two sets $A, B \subseteq V$ cross if $A \cap B \neq \emptyset$ but neither is a subset of the other. A family \mathcal{L} of subsets of V is called *laminar* no two of its subsets cross, i.e. for any $A, B \in \mathcal{L}$ we have either $A \cap B = \emptyset, A \subseteq B$ or $B \subseteq A$.

Lemma 3 Let \mathcal{L} be a laminar family of subsets of V such that $|A| \ge 2$ for any $A \in \mathcal{L}$. Then $|\mathcal{L}| \le |V| - 1$.

Proof. Assignment 5.

Theorem 1 Any extreme point of (LP-Span) is integral.

Proof. Let \overline{x} be an extreme point. It is easy to see that \overline{x} is an extreme point if and only if the corresponding solution we get after deleting $e \in E$ with $\overline{x}_e = 0$ is an extreme point, so we assume $\overline{x}_e > 0$ for each $e \in E$.

We show that in this case it must be that $|E| \leq |V| - 1$. If so, then we are done because:

- $\overline{x}(E(V)) = |V| 1$
- $\overline{x}_e \leq 1$ for each $e \in E$

So if $|E| \leq |V| - 1$ then we must have $\overline{x}_e = 1$ for each $e \in E$.

By the properties of extreme points, |E| is equal to the rank of the collection of vectors $\mathcal{M} = \{\chi(E(S)) : \overline{x}(E(S)) = |S|-1\}$. We show that there is a laminar family \mathcal{L} consisting only of S with $|S| \ge 2$ and $\overline{x}(S) = |S|-1$ such that the vectors $\chi(E(S)), S \in \mathcal{L}$ form a basis for the space spanned by all tight constraints (i.e. the space spanned by \mathcal{M}). If so, then by Lemma 3 we have

$$|E| = \operatorname{rank}(M) = \operatorname{rank}\left(\{\chi(E(S)) : S \in \mathcal{L}\}\right) = |\mathcal{L}| \le |V| - 1$$

which completes the proof.

Let \mathcal{L} be the largest laminar collection of subsets of V such that $\chi(E(S)), S \in \mathcal{L}$ are linearly independent. If $|\mathcal{L}| < |E|$ then there is some $R \subseteq V, |R| \ge 2$ such that $\overline{x}(R) = |R| - 1$ but $\chi(R) \notin \operatorname{span}\{\chi(E(S)) : S \in \mathcal{L}\}$.

Because R cannot be added to \mathcal{L} , we know that R crosses $S \in \mathcal{L}$. Choose such an R that crosses the fewest sets in \mathcal{L} and let S be any set in \mathcal{L} such that R and S cross.

Let F' denote the edges with one endpoint in S - R and the other in R - S. Then we have

$$\begin{aligned} |R| - 1 + |S| - 1 &= \overline{x}(E(R)) + \overline{x}(E(S)) & \text{(the corresponding constraints are tight)} \\ &= \overline{x}(E(R \cap S)) + \overline{x}(E(R \cup S)) - \overline{x}(F') & \text{(count how many times each edge contributes to each side)} \\ &\leq |R \cap S| - 1 + |R \cup S| - 1 & (\overline{x} \text{ is feasible}) \\ &= |R| - 1 + |S| - 1 \end{aligned}$$

Therefore all inequalities hold with equality. In particular:

- $\overline{x}(E(S \cup R)) = |S \cup R| 1$
- $\overline{x}(E(S \cap R)) = |S \cap R| 1$
- $\overline{x}(F') = 0$

(if $|S \cap R| = 1$ then just ignore any term involving it and the proof works fine)

Because $\overline{x}_e > 0$ for each $e \in E$, then $F' = \emptyset$ which means $\chi(E(R)) + \chi(E(S)) = \chi(E(R \cup S)) + \chi(E(R \cap S))$. Both $R \cup S$ and $R \cap S$ can only cross sets in \mathcal{L} that R crossed. Since both do not cross S, then both cross fewer sets in \mathcal{L} than R.

Finally, it cannot be that both $\chi(E(R \cup S)), \chi(E(R \cap S)) \in \operatorname{span}\{\chi(E(S')) : S' \in \mathcal{L}\}\)$, otherwise $\chi(E(R)) = \chi(E(R \cup S)) + \chi(E(R \cap S)) - \chi(E(S)) \in \operatorname{span}\{\chi(E(S')) : S' \in \mathcal{L}\}\)$. Therefore, at least one of $R' \in \{R \cap S, R \cup S\}\)$ is such that $\chi(E(R')) \notin \operatorname{span}\{\chi(E(S')) : S' \in \mathcal{L}\}\)$, R' crosses fewer sets of \mathcal{L} than R, and the constraint for R' is tight. This contradicts our choice of R.

29.2 The Minimum Bounded-Degree Spanning Tree Problem

Now we tackle the main problem. Given a graph G = (V, E) with edge costs $c_e \ge 0, e \in E$ and integer vertex bound $B_v \ge 1, v \in V$, the goal is to find the cheapest spanning tree T of G such that $|\delta(v) \cap T| \le B_v$ for each $v \in V$. It is NP-hard to determine if there is a feasible solution even when $B_v = 2$ for all $v \in V$ because this is precisely the problem of determining if G has a Hamiltonian path.

We will see the next best thing: a polynomial-time algorithm that either (correctly) states there is no such tree or it returns a spanning tree T with $|\delta(v) \cap T| \leq B_v + 1$. Furthermore, if there is in fact a spanning tree satisfying the original degree bounds then the cost of the returned tree T is at most OPT. We are not losing anything in the objective function value here, just the degree bounds!

We consider the following linear programming relaxation. Here, $x(\delta(v))$ denotes $\sum_{e \in \delta(v)} x_e$. The relaxation is slightly more general in that we only have variables for a subset of edges $F \subseteq E$ and degree constraints for a subset of vertices $W \subseteq V$.

minimize:
$$\sum_{e \in F} c_e \cdot x_e$$

subject to:
$$x(F(S)) \leq |S| - 1 \quad \text{for each } S \subseteq V, |S| \geq 2$$
$$x(F(V)) = |V| - 1$$
$$x(\delta(v)) \leq B_v \quad \text{for each } v \in W$$
$$x \geq 0$$
(LP-BDST(W, F))

The algorithm we consider is an *iterative relaxation* algorithm. It iterates the process of solving the LP, deleting edges with x-value 0, and dropping some constraints until the set of feasible solutions is given by the normal spanning tree LP (**LP-Span**).

Algorithm 1 Minimum BOUNDED-DEGREE SPANNING TREE Approximation

if (LP-BDST(V, E)) is infeasible then return no solution end if $F \leftarrow E$ $W \leftarrow V$ while $W \neq \emptyset$ do Solve (LP-BDST(W, F)) to get an optimum extreme point \overline{x} $F \leftarrow \{e \in F : \overline{x}_e > 0\}$ $W \leftarrow \{v \in V : |\delta(v) \cap F| \ge B_v + 2\}$ end while return An optimum extreme point solution to (LP-BDST(\emptyset, F))

If Algorithm 1 returns no solution then clearly there is none as the $\{0, 1\}$ solution corresponding to the optimal degree-bounded spanning tree would be feasible. Next, since the main loop only drops constraints and edges with \overline{x} -value 0 then the cost $\sum_{e \in F} c_e \cdot \overline{x}_e$ does not increase over the iterations. Since we only drop degree constraints for vertices v with $|\delta(v) \cap F| \leq B_v + 1$, then any resulting integer solution must satisfy this slightly relaxed degree bound. Finally, the feasible solutions of $(\mathbf{LP}\text{-BDST}(\emptyset, F))$ are precisely the feasible solutions of $(\mathbf{LP}\text{-Span})$ for the graph G = (V, F).

By Theorem 1, the fact that the optimum solution LP solution does not increase over the iterations, and the fact that $|\delta(v) \cap F| \leq B_v + 1$, the last step returns an integer solution corresponding to a spanning tree with cost at most the optimum of (**LP-BDST**(V, E)) that violates each degree bound by at most +1.

All that is left to prove is that each iteration of the algorithm makes progress.

Theorem 2 Consider an extreme point \overline{x} for (LP-BDST(W, F)) such that $\overline{x}_e > 0$ for each $e \in F$. If $W \neq \emptyset$, then there is some $v \in W$ such that $|\delta(v) \cap F| \leq B_v + 1$.

Proof. By way of contradiction, suppose $|\delta(v) \cap F| \ge B_v + 2$ for every $v \in W$. Using essentially the same arguments as in the proof of Theorem 1, we find a laminar collection \mathcal{L} of subsets of V such $|S| \ge 2$ for each $S \in \mathcal{L}$ and such that the corresponding vectors form a basis for $\{\chi(E(S)) : \overline{\chi}(E(S)) = |S| - 1\}$. Then we find $U \subseteq W$ whose corresponding degree constraints are tight such that the vectors

$$\{\chi(F(S)): S \in \mathcal{L}\} \cup \{\chi(\delta(v)): v \in U\}$$

$$(29.1)$$

form a basis for the space spanned by tight constraints. This can be done by greedily adding vertices $u \in W$ such that $\overline{x}(\delta(u)) = B_v$ to U while ensuring the vectors (29.1) remain linearly independent.

Note that have $|\mathcal{L}| + |U| = |F|$ by the characterization of extreme points. Now, if $U = \emptyset$ then \overline{x} is an extreme point of (**LP-Span**) for the graph G = (V, F), so it is integral already by Theorem 1 and it is clear that integer solutions to (**LP-BDST**(W, F)) must satisfy the degree bounds for nodes in W without any violation. So, we now assume $U \neq \emptyset$.

We will assign a charge of 1 to each $e \in F$ and distribute some of this charge to sets in \mathcal{L} and vertices in W. We will count the amount of charge that is redistributed in two ways. On one hand, we see that strictly less than |F| units of charge is sent to these sets. On the other hand, we will see that at least |F| units of charge were collected by \mathcal{L} and W. This is a contradiction, so it must be that some $v \in W$ satisfies $|\delta(v) \cap F| \leq B_v + 1$.

For each $e = (u, v) \in F$, send \overline{x}_e units of charge to the smallest $S \in \mathcal{L}$ with $u, v \in S$ (if there is none, then do not distribute this charge). Also, send $(1 - \overline{x}_e)/2$ units of charge to each of u and v that lies in U. Note that e sends out at most 1 unit of charge, so the total charge sent out by all edges is at most |F| (we will soon see it is, in fact, strictly less than |F|).

Next we show that each $v \in U$ and each $S \in \mathcal{L}$ collect at least one unit of charge. To start, consider some $v \in U$. Then the charge that v collects is precisely

$$\sum_{e \in \delta(v) \cap F} \frac{1 - \overline{x}_e}{2} = \frac{|\delta(v) \cap F| - B_v}{2} \ge 1$$

where the equality is because the degree constraint for $u \in W$ is tight and the inequality is because we are assuming $|\delta(v) \cap F| \ge B_v + 2$.

Now consider some $S \in \mathcal{L}$. Let R_1, R_2, \ldots, R_k denote the maximal subsets of S in \mathcal{L} . That is, each $R_i \in \mathcal{L}$ is a proper subset of S and no other $R' \in \mathcal{L}$ satisfies $R_i \subsetneq R' \subsetneq S$. Then the total charge collected by \mathcal{L} is precisely

$$\overline{x}(F(S)) - \sum_{i=1}^{k} \overline{x}(F(R_i)) = (|S| - 1) - \sum_{i=1}^{k} (|R_i| - 1)$$

We have $|R_1| + \ldots + |R_k| \le |S|$ so the last expression is a nonnegative integer. Furthermore, we have $\chi(F(S)) \ne \sum_i \chi(F(R_i))$ (by linear independence) so there is some edge $e \in F$ in F(S) but not in any $F(R_i)$. Thus, S collects a positive integer amount of charge, meaning it collects at least 1 charge.

So far, we have shown that the edges distribute at most |F| units of charge and that \mathcal{L} and U collectively receive at least $|\mathcal{L}| + |U| = |F|$ units of charge. We will show that some edge did not distribute exactly 1 unit of charge, so in fact the total charge that was distributed is strictly less than |F|, a contradiction.

First, two simple cases:

- If $V \notin \mathcal{L}$ then there is some $e \in F$ that is not contained in any $S \in \mathcal{L}$ so the charge $\overline{x}_e > 0$ is not distributed.
- If there is some vertex $v \in V U$ such that $\overline{x}_e < 1$ for some $e \in \delta(v) \cap F$, then the charge $(1 \overline{x}_e)/2 > 0$ is not distributed.

Now assume that none of these happen. We also note that if $\overline{x}_e = 1$ for some $e = (u, v) \in F$ then $\chi(E(\{u, v\})) \in$ span $\{\chi(E(S)) : S \in \mathcal{L}\}$ because the constraint $\overline{\chi}(E(\{u, v\})) \leq 1$ is tight and we chose \mathcal{L} so that the associated vectors span $\{\chi(E(S)) : \overline{\chi}(E(S)) = |E| - 1\}.$

Putting all of this together, we have

$$2 \cdot \chi(E(V)) = \sum_{v \in U} \chi(\delta(v)) + \sum_{v \in V-U} \chi(\delta(v)) = \sum_{v \in U} \chi(\delta(v)) + \sum_{v \in V-U} \sum_{e \in \delta(v)} \chi(\{e\}).$$

We just argued that each vector $\chi(\{e\})$ in the last sum is spanned by $\{\chi(E(S)) : S \in \mathcal{L}\}$. Furthermore, the first sum in the last expression is nonzero because $U \neq \emptyset$. Therefore, we have expressed a non-zero linear combination of the vectors $\{\chi(\delta(v)) : v \in U\}$ by a linear combination of the vectors in $\{\chi(E(S)) : S \in \mathcal{L}\}$, which contradicts the fact that the vectors in (29.1) are linearly independent.

The spanning tree polytope (**LP-Span**) was presented and proved to be integral by Edmonds [E71]. Singh and Lau described the +1 approximation for the MINIMUM DEGREE BOUNDED SPANNING TREE problem [SL11], which improved over the +2 approximation by Goemans [G06]. Earlier work had considered the unweighted problem: given degree bounds B_v determine if there is any spanning tree with these bounds. An algorithm by Fürer and Raghavachari [FR94] will either find some spanning tree where the degree of each node v is at most $B_v + 1$ or else determine there is no such tree.

References

- E71 J. Edmonds, Matroids and the greedy algorithm, Mathematical Programming, 1:125–136, 1971.
- FR94 M. Fürer and B. Raghavachari, Approximating the minimum-degree steiner tree to within one of optimal, Journal of Algorithms, 17(3):409–423, 1994.
- SL11 M. Singh and L. C. Lau, Approximating minimum bounded degree spanning trees to within one of optimal, In Proceedings of STOC, 2007.