
CMPUT 675: Approximation Algorithms Fall 2014

Lecture 26 (Nov 7 & 12): k-MST andPrize Collecting Steiner Tree
Lecturer: Zachary Friggstad Scribe: Zachary Friggstad

26.1 The Problems

We discussed two problems in these lectures. We first recall their definitions, present some related linear
programs, and collect some basic facts before delving into the algorithms.

Definition 1 In the k-MST problem, we are given a metric graph G = (V ∪ {r}, E) with distances d(e), e ∈ E
and an integer k ≤ |V |. The goal is to find the cheapest F ⊆ E such that at least k nodes in V are in the same
component as r in the graph (V ∪ {r}, F).

Clearly a minimum-cost solution is a tree.

Definition 2 In the Price Collecting Steiner Tree problem, we are given a metric graph G = (V ∪{r}, E)
with distances d(e), e ∈ E and penalties πv ≥ 0, v ∈ V . The goal is to find a set of edges F to buy and a set
of nodes P ⊆ V to discard of minimum total value

∑
e∈F d(e) +

∑
v∈P πv such that every vertex not in P is

connected to r in (V ∪ {r}, F).

Throughout, we will let n = |V | so there are n + 1 nodes in total in G = (V ∪ {r}, E). We will also use d(F)
to denote

∑
e∈F d(e) and π(P) to denote

∑
v∈P πv. As with the Steiner Tree problem, we can reduce the

general non-metric case to the metric case by working in the shortest path metric, so assuming G is a metric
does not lose any generality.

26.1.1 Linear Programs

A natural LP relaxation for the k-MST problem is the following. Here, xe = 1 corresponds to us buying edge
e and zv = 1 corresponds to us choosing to not connect v ∈ V to r.

minimize :
∑
e∈E

d(e) · xe

subject to :
∑
e∈δ(S)

xe + zv ≥ 1 for each v ∈ V and each {v} ⊆ S ⊆ V − {r}∑
v∈V

zv ≤ n− k

x, z ≥ 0

(LP-kMST)

Unfortunately, (LP-kMST) has a bad integrality gap. For example, suppose G has an edge (r, v1) with cost n
and n− 1 edges (v1, vi), 2 ≤ i ≤ n each with cost 1 then the optimum integer solution for k = 2 is n+ 1 but we
can set zvi = (n− 2)/n and xe = 2/n for each edge e which is a feasible LP solution with cost ≤ 2.

We will still use (LP-kMST) to design a constant-factor approximation. To do this, we “Lagrangify” the
cardinality constraint. In particular, for any λ ≥ 0 we consider the following LP where we call λ the Lagrangean

26-1

26-2 Lecture 26: k-MST and Prize Collecting Steiner Tree

multiplier.

minimize :
∑
e∈E

d(e) · xe + λ ·

(∑
v∈V

zv − (n− k)

)
subject to :

∑
e∈δ(S)

xe + zv ≥ 1 for each v ∈ V and each {v} ⊆ S ⊆ V − {r}

x, z ≥ 0
(LP-kMST(λ))

Finally, we consider the LP that is obtained by dropping the constant term from the objective function of
(LP-kMST(λ)).

minimize :
∑
e∈E

d(e) · xe +
∑
v∈V

λ · zv

subject to :
∑
e∈δ(S)

xe + zv ≥ 1 for each v ∈ V and each {v} ⊆ S ⊆ V − {r}

x, z ≥ 0
(LP-PCST(λ))

Note that (LP-PCST(λ)) is an LP relaxation of the Prize Collecting Steiner Tree instance defined over
G where every v ∈ V has penalty πv = λ.

Notation

• OPT - The optimum solution value to the original k-MST instance.

• OPTk(λ) - The optimum solution value of (LP-kMST(λ)).

• OPTST (λ) - The optimum solution value of (LP-PCST(λ)).

26.1.2 Observations

Lemma 1 For any λ ≥ 0, OPTk(λ) ≤ OPT .

Proof. The natural {0, 1} solution corresponding to the optimum k-MST solution is feasible for (LP-kMST(λ)).
The second term of the objective function is nonpositive because at most n− k nodes are not connected to the
root r and λ ≥ 0.

Lemma 2 For any λ ≥ 0, OPTk(λ) + λ · (n− k) = OPTST (λ).

Proof. Their feasible solutions are the same and their objective functions differ by λ · (n− k).

The following will be used in Section 26.2 and its proof appears in Section 26.3.

Theorem 1 For any λ ≥ 0, we can find a set of edges F with corresponding nodes P not connected to r in
(V ∪ {r}, F) such that d(F) + 2 · λ · |P | ≤ 2 ·OPTST (λ).

Such an algorithm is called a “Lagrangean multiplier preserving approximation”. This is stronger than saying
we have an LP-based 2-approximation for the Prize Collecting Steiner Tree instance on G where all
penalties are λ. The factor 2 in front of the penalties in the approximation guarantee in Theorem 1 is crucial
in the upcoming k-MST approximation.

Lecture 26: k-MST and Prize Collecting Steiner Tree 26-3

26.2 k-MST

We present a (5 + ε)-approximation with running time that is polynomial in the size of G and log 1
ε . A short

discussion follows on how to get a 5-approximation (without the ε).

As a pre-processing step, we guess the furthest node that is spanned by the optimum solution and discard all
farther nodes. By this, we mean we try all nodes v as our guess, run the following algorithm, and keep the best
solution found over all guesses.

So, we assume that all v ∈ V satisfy d(r, v) ≤ OPT from now on. It is easy to check if there is a 0-cost solution
(i.e. if at least k nodes have distance 0 to r), so we also assume OPT > 0. Let δ ≤ OPT be the minimum
non-zero distance d(r, v) over v ∈ V .

For any λ ≥ 0, consider what happens when we invoke the approximation algorithm stated in Theorem 1. When
λ = 0, then F = ∅ and P = V is returned and when λ is very large, say 2 ·MST(G)+1, then a spanning tree F of
V ∪{r} and P = ∅ is returned. This is because any solution which discards even a single node when the penalty
is ∆ is more than twice as expensive as the minimum spanning tree of G, so it cannot be a 2-approximate
solution. This justifies the binary search in Algorithm 1 below.

Algorithm 1 k-MST Approximation (assuming 0 < d(r, v) ≤ OPT for each v ∈ V)

Binary search for λ1, λ2 ∈ [0, 2 ·MST (G) + 1] such that:
a) λ1 ≤ λ2 ≤ λ1 + ε·δ

4·n
b) Fi, Pi are returned when using the approximation in Theorem 1 invoked with uniform penalties λi
c) |P1| ≥ n− k ≥ |P2|

if either |P1| or |P2| equals n− k then
return the respective F1 or F2

end if
α1 ← (n−k)−|P2|

|P1|−|P2|

α2 ← |P1|−(n−k)
|P1|−|P2|

if α2 ≥ 1/2 then
return F2 (Note: F2 is feasible because |P2| ≤ n− k)

else
double and shortcut F2 to get a cycle C spanning the nodes included in F2 but not F1

(Note: C has at least |P1| − |P2| nodes)
find the cheapest subpath P of length |P1| − (n− k) in C
return F1 ∪ P ∪ {(r, v)} where v is some node on P (Note: this solution has exactly n− k nodes)

end if

The number of iterations of the binary search routine is polynomial in the size of G and log 1
ε . Clearly the rest

of the algorithm runs in polynomial time.

26.2.1 Analysis

We start with the easy case where either F1 or F2 excludes exactly n− k nodes (the first return statement).

Lemma 3 If |P1| or |P2| has size exactly n− k, then the cost of the respective F1 or F2 is at most 2 ·OPT .

Proof. Suppose |P1| = n − k, essentially the same proof will work when |P2| = n − k. By the Lagrangean
preserving property guaranteed in Theorem 1, we know d(F1) + 2 · λ1 · |P1| ≤ 2 ·OPTST (λ1). Rearranging, we

26-4 Lecture 26: k-MST and Prize Collecting Steiner Tree

have

d(F1) ≤ 2 · (OPTST (λ1)− λ1 · (n− k))

= 2 ·OPTk(λ1) (by Lemma 2)

≤ 2 ·OPT (by Lemma 1)

Now suppose |P1| > n− k > |P2|. The following observation can be verified in a straightforward manner.

Observation 1 The coefficients α1, α2 satisfy the following.

• α1, α2 ≥ 0

• α1 + α2 = 1

• α1 · |P1|+ α2 · |P2| = n− k.

These observations say that in some sense the two solutions F1, F2 are “feasible on average”. Of course, this is
not a precise statement but the intuition works well: the following lemma states that “on average” their cost is
bounded.

Lemma 4 α1 · d(F1) + α2 · d(F2) ≤
(
2 + ε

2

)
·OPT

Proof. We start by noting two points:

1. OPTST (λ1) ≤ OPTST (λ2)
Indeed, the optimal solution to (LP-PCST(λ)) for λ = λ2 is feasible for the same LP with λ = λ1 and
is no more expensive because λ1 ≤ λ2.

2. (λ2 − λ1) · α2 · |P2| ≤ ε
4 ·OPT

From the binary search, we have

λ2 − λ1 ≤
ε · δ
4 · n

≤ ε ·OPT
4 · n

.

The latter bound is because δ is the minimum nonzero distance in the metric. Since α2 ≤ 1 and |P2| ≤ n,
then the claimed bound holds.

Therefore

α1 · d(F1) + α2 · d(F2)
≤ 2 · (α1 ·OPTST (λ1)− λ1 · α1 · |P1|+ α2 ·OPTST (λ1)− λ2 · α2 · |P2|) (by Theorem 1)
≤ 2 · ((α1 + α2) ·OPTST (λ2)− λ1 · α1 · |P1| − λ2 · α2 · |P2|) (Point 1 above)
= 2 · (OPTST (λ2)− λ2 · (α1 · |P1|+ α2 · |P2|) + (λ2 − λ1) · α1 · |P2|) (rearranging and recalling α1 + α2 = 1)
= 2 · (OPTST (λ2)− λ2 · (n− k) + (λ2 − λ1) · α1 · |P2|) (recalling α1 · |P1|+ α2 · |P2| = n− k)
≤ 2 ·OPT + 2 · (λ2 − λ1) · α1 · |P2| (Lemmas 1 and 2)
≤

(
2 + ε

2

)
·OPT (Point 2 above)

The second easiest case is when α2 ≥ 1/2. Algorithm 1 returns a solution that excludes |P2| ≤ n−k nodes from
the tree F2 (i.e. it is a feasible solution). We claim that it is also a relatively cheap solution.

Lecture 26: k-MST and Prize Collecting Steiner Tree 26-5

Lemma 5 If α2 ≥ 1/2, then d(F2) ≤ (4 + ε) ·OPT .

Proof.
d(F2) ≤ 2 · α2 · d(F2) ≤ 2 · (α1 · d(F1) + α2 · d(F2)) ≤ (4 + ε) ·OPT.

The last bound is by Lemma 4.

We are left with the “tricky” case when α2 < 1/2. As with Lemma 5, we can show that F1 has low cost.
However, it is not a feasible solution which is why Algorithm 1 grafts on the path P to turn it into a feasible
solution. We first argue that this procedure is valid (i.e. the C contains enough nodes) and then bound the cost
of the returned solution.

First, we claim that F2 and, thus, C spans at least |P1| − |P2| nodes that are not spanned by F1. This is simple
counting; if A1, A2 denote the nodes spanned by F1, F2 respectively, then the number of nodes that are spanned
by F2 but not by F1 is bounded as follows:

|A2 −A1| ≥ |A2| − |A1| = (n− |P2|)− (n− |P1|) = |P1| − |P2|.

Also recall that |P2| ≤ n− k so it makes sense to ask for the cheapest subpath of C that spans |P1| − (n− k) ≤
|P1| − |P2| nodes.

Having justified the execution of the algorithm, we bound the final cost.

Lemma 6 If α1 > 1/2, then the cost of the solution returned by the algorithm is at most (5 + ε) ·OPT .

Proof. By our preprocessing step (where we discarded nodes u with d(r, u) > OPT), we have d(r, v) ≤ OPT
where v is the node indicated in the last step. It suffices to bound d(F1) + d(P) by (4 + ε) ·OPT .

Since we obtain C by doubling and shortcutting, then d(C) ≤ 2 · d(F2). Since P is the cheapest subpath of C
with length |P1| − (n− k) and since C has |P1| − |P2| nodes, then

d(P) ≤ |P1| − (n− k)

|P1| − |P2|
· d(C) = α2 · d(C) ≤ 2 · α2 · d(F2).

Because α1 ≥ 1/2, we have:

d(F1) + d(P) ≤ 2 · (α1 · d(F1) + α2 · d(F2)) ≤ (4 + ε) ·OPT.

Again, the last bound is by Lemma 4.

26.2.2 Removing the ε

Theorem 1 can be improved to the bound d(F) + (2− 1/n) · λ · |P | ≤ (2− 1/n) ·OPTST (λ). Comments on this
will be made at the end of the Prize Collecting Steiner Tree approximation below.

Run the binary search to find λ1, λ2 as before, except with the bound

λ2 − λ1 ≤
δ

2 · n2
.

Lemma 4 then guarantees

α1 · d(F1) + α2 · d(F2) ≤ (2− 1/n) ·OPT + (2− 1/n) · (λ2 − λ1) · α2 · |P2| ≤ 2 ·OPT.

Using this cleaner bound in the rest of the proof yields the 5-approximation.

26-6 Lecture 26: k-MST and Prize Collecting Steiner Tree

26.3 Prize Collecting Steiner Tree

We begin by considering an LP relaxation for Prize Collecting Steiner Tree that is not the obvious
generalization of (LP-PCST(λ)) to arbitrary penalties π. Here, for every subset S ⊆ V − {r} we have a
variable zS . Recall that π(S) denotes

∑
v∈S πv.

minimize :
∑
e∈E

ce · xe +
∑
∅(S⊆V

π(S) · zS

subject to :
∑
e∈δ(S)

xe +
∑

S⊆R⊆V−{r}

zR ≥ 1 for each ∅ (S ⊆ V

x, z ≥ 0

(LP-PCST)

This relaxation contains exponentially many constraints and variables. However, the algorithm we will consider
is a primal-dual algorithm which still runs in polynomial time. We let OPTPCST denote the optimum solution
value of (LP-PCST).

The dual of (LP-PCST) is the following.

maximize :
∑
∅(S⊆V

yS

subject to :
∑
∅(S⊆V

s.t. e∈δ(S)

yS ≤ ce for each e ∈ E

∑
∅(R⊆S

yR ≤ π(S) for each ∅ (S ⊆ V

y ≥ 0

(Dual-PCST)

While the k-MST results required approximation algorithms relative to (LP-PCST(λ)), it suffices to use
(LP-PCST).

Lemma 7 Suppose λ ≥ 0 is such that πv = λ for each v ∈ V . Then OPTST (λ) = OPTPCST .

Proof. Given an optimum solution (x∗, z∗) to (LP-PCST), we construct a feasible solution to (LP-PCST(λ))
by using the same x∗ and setting zv =

∑
S:v∈S zS . It is easy to verify this is feasible for (LP-PCST(λ)) with

the same cost, so OPTST (λ) ≤ OPTPCST .

Conversely, suppose (x∗, z∗) is an optimum solution to (LP-PCST(λ)). Order V so that zv1 ≤ zv2 ≤ . . . ≤ zvn .
For each 1 ≤ i ≤ n let Si = {i, . . . , n} and set zSi = zvi − zvi−1 (if i = 1 then just set zS1 = zv1). It is easy to
verify this yields a feasible solution to (LP-PCST) with the same cost, so OPTPCST ≤ OPTST (λ).

26.3.1 The Algorithm

Now we focus on the main algorithm, which works for general penalties π.

Theorem 2 There is a polynomial-time algorithm that finds a feasible Prize Collecting Steiner Tree
solution (F, P) such that c(F) + 2 · π(P) ≤ 2 ·OPTPCST .

The algorithm is a primal-dual algorithm. We will grow moats around the nodes in V , much like in the case of
Steiner Forest, and grow them until they connect to r. However, each moat will come with an associated

Lecture 26: k-MST and Prize Collecting Steiner Tree 26-7

charge that depletes over time. If the charge is completely depleted, then we give up on connecting that moat to
r. Once this phase is done, we prune the solution to discard edges not connected to r and edges whose deletion
produces a component that had 0 charge at some point in the algorithm.

In Algorithm 2, we grow a forest F alongside a feasible dual y. An active component will be a connected
component C of F such that the dual constraint for C is slack. Note that if C contains r, then it is not an
active component. Call this component the root component of F .

Each component C will be associated with a charge γ(C) that depletes over time. These charges keep track of
the slack of the dual constraint for a component C of F ; in particular, C is active if and only if γ(C) > 0.

Algorithm 2 Lagrangean multipler preserving 2-approximation for Prize Collecting Steiner Tree

F ← ∅
γ({v}) = πv for each v ∈ V
C = {{v} : v ∈ V }
y ← 0
while there are still active components do

Simultaneously raise yC and decrease γ(C) for each active component C (at the same rate for each) until:
1) γ(C) becomes 0 for some active component C,

Do nothing (i.e. C becomes inactive)
2) Some edge e goes tight,

Add e to F and set γ(C1 ∪ C2)← γ(C1) + γ(C2) where C1, C2 are the components of F bridged by e
C ← C ∪ {C1 ∪ C2}

end while
Let Cr denote the root component of F and F (Cr) denote its edges
while some e ∈ F (Cr) is such that the new nonroot component C ′ of F − {e} has C ′ ∈ C and γ(C ′) = 0 do
F ← F − {e}
Let Cr denote the new nonroot component of this edge set F

end while
Delete every edge e from F that is not in the root component of F .
return (F, P) where P is the set of nodes not in the root component of F

The first loop iterates a polynomial number of times: there can be at most n “deactivations” of an active
component between iterations where an edge is added to F . This also means the number of dual variables yC
with positive value constructed is also at most polynomial, so we can implement this algorithm in polynomial
time by only keeping track of these dual variables.

Now consider the set C constructed during the execution of Algorithm 2. Note that yS > 0 means S ∈ C.

Claim 1 For any C,C ′ ∈ C we have C ∩ C ′ = ∅, C ⊆ C ′ or C ′ ⊆ C (i.e. the sets with positive dual form a
laminar family).

Proof. Suppose C and C ′ share a vertex v. Then cannot be that C and C ′ are different components in some
iteration. Say C is a component during iteration i and C ′ is a component during iteration i′ and say that i < i′.
An easy invariant of this loop is that the components of one iteration are subsets of components of subsequent
iterations. So, in iteration i′ we have that C is a subset of a component in F . Since C contains v ∈ C ′ in
iteration i′, then it must be that C ⊆ C ′.

Now let (F, P) denote the returned solution. We partition the sets with positive dual into two sets

• S1 = {C ∈ C : and C 6⊆ P}

• S2 = {C ∈ C : and C ⊆ P}

26-8 Lecture 26: k-MST and Prize Collecting Steiner Tree

In fact, the dual variables for sets in S2 pay for discarding the nodes in P perfectly.

Lemma 8 π(P) =
∑
C∈S2 yC

Proof. We first establish the following loop invariant for the first while loop: for each component C of F (active
or not),

∑
S⊆C yS +γ(C) = π(C). Initially this is true because y = 0 and γ({v})← π(C). It holds when raising

yC and decreasing γ(C) because it is just transferring value from γ(C) to yC .

Finally, we show it holds when some edge e bridging C1 and C2 is added to F . First, note that any C ∈ C with
C ⊆ C1 ∪ C2 must be either a subset of C1 or a subset of C2 by Claim 1. Thus,∑

S⊆C1∪C2

yS =
∑
S⊆C1

yS +
∑
S⊆C2

yS = π(C1)− γ(C1) + π(C2)− γ(C2) = π(C1 ∪ C2)− γ(C1 ∪ C2).

Now consider any v ∈ P . If v was not in the root component of F just after the first while loop (before the
pruning), then it lies in a component C ∈ C such that γ(C) = 0. If v was in the root component of F after
the first loop but was pruned in the second loop, then it also lies in some C ∈ C with C ⊆ P and such that
γ(C) = 0, so

∑
S⊆C yS = π(C).

Let C1, . . . , Ck be the maximal subsets of S2 (i.e. Ci ∈ S2 but there is no C ′ ∈ S2 such that Ci (C ′). We just
showed that P = ∪ki=1Ci and that π(Ci) =

∑
S⊆Ci

yS . By Claim 1, any S ∈ S2 must be a subset of some Ci so
in fact

∑
S∈S2 yS = π(P).

Lemma 9 c(F) ≤ 2 ·
∑
S∈S1 yS

Proof. We only sketch this one since it is similar to an argument we saw in an earlier lecture.

Let F denote the final set of returned edges. Note that any C ∈ C with δ(C) ∩ F must satisfy C ∈ S1. This is
simply because no edge of F has an endpoint in P .

Consider some iteration of the first while loop and let Fi denote the set of edges in this iteration. Consider
the graph H that consists of a vertex for each component of Fi and edges e ∈ F that bridge two of these
components. This graph H consists of isolated nodes plus a single tree that includes the root component of Fi.
Furthermore, each leaf of H must either be the root component or an active component of Fi in this iteration,
otherwise we would have pruned its parent edge in the second while loop.

Therefore, all leaves of H except, perhaps, the root component are active components of Fi meaning the active
components/nodes in H have average degree at most 2. Then essentially the same “averaging argument” using
relaxed complementary slackness as was used in our Steiner Forest discussion shows that c(F) ≤ ·

∑
S∈S1 yS .

Combining Lemma 8 and 9 shows

c(F) + 2 · π(P) ≤ 2 ·
∑
∅(S⊆V

yS ≤ 2 ·OPTPCST ,

which concludes the proof of Theorem 2.

26.3.2 A Slight Improvement

To get the 5-approximation for k-MST (not just the 5 + ε approximation) we needed the slightly stronger
statement that c(F) + (2 − 1/n) · π(S) ≤ (2 − 1/n) · OPTPCST . This follows from a slightly stronger degree
counting argument.

Lecture 26: k-MST and Prize Collecting Steiner Tree 26-9

If T is a tree and S is a subset of nodes of T that includes all but at most one leaf (e.g. the root component in
H in the proof of Lemma 9) then one easily show that the average degree of nodes in S is at most 2− 1/n.

26.4 Discussion

The 5-approximation presented here is by Chudak, Roughgarden, and Williamson [CRW01] and the current best
approximation is a 2-approximation by Garg [G05]. The primal-dual approximation for Prize-Collecting
Steiner Forest is due to Goemans and Williamson [GW95].

References

CRW01 F. A. Chudak, T. Roughgarden, and D. P. Williamson, Approximate k-MSTs and k-Steiner trees via the
primal dual method and Lagrangean relaxation, In Proceedings of IPCO, 2011.

G05 N. Garg, Saving an epsilon: a 2-approximation for the k-MST problem in graphs, In Proceedings of STOC,
2005

GW95 M. X. Goemans and D. P. Williamson A general approximation technique for constrained forest problems,
SIAM Journal on Computing, 24:296–317, 1995.

