
CMPUT 675: Approximation Algorithms Fall 2014

Lecture 25 (Nov 3 & 5): Group Steiner Tree
Lecturer: Zachary Friggstad Scribe: Zachary Friggstad

25.1 Group Steiner Tree

In this problem, we are given a graph G = (V,E) with edge distances d(e), e ∈ E, a root node r ∈ V , and
subsets of terminal groups X1, . . . , Xk ⊆ V . The goal is to find the cheapest F ⊆ E such that in the graph
(V, F), r is connected to at least one node in each terminal group. When exach Xt consists of a single node,
this is just the usual Steiner Tree problem.

Throughout, we let n = |V | and g = max1≤t≤k |Xt|.

As with Steiner Tree, we can (but do not always) assume that G is a metric by considering the shortest path
metric of the original graph. However, Group Steiner Tree is harder to approximate.

Theorem 1 Unless P = NP, there is no o(log k) or o(log n) approximation for Group Steiner Tree even
if G is a star.

Proof. We reduce from an instance (X,S) of Set Cover with set costs c(S) ≥ 0, S ∈ S. Let G = (S ∪{r}, E)
where r is a new node and E = {(S, r) : S ∈ X} where d(S, r) has distance c(S). For every i ∈ X, let
Xi = {S : i ∈ S} be a terminal group. The correspondence between feasible solutions to the Set Cover and
Group Steiner Tree instances is immediate.

Since there is no o(log |X|)-approximation for Set Cover unless P = NP, we see that it is also NP-hard to
approximate Group Steiner Tree within o(log n) or o(log k).

In fact, more can be said:

Theorem 2 [[HK03]] Unless NP ⊆ DTIME(nO(log logn), there is no O(log2−ε n)-approximation for Group
Steiner Tree even if G is a tree for any constant ε > 0.

We will essentially match this lower bound in trees.

Theorem 3 There is a randomized polynomial-time algorithm that finds a feasible solution for a Group
Steiner Tree instance in trees whose cost is O(log g · log k) · OPTLP with probability at least 1/2. Here,
the LP relaxation is given below as (LP-GST).

minimize :
∑
e∈E

d(e) · xe

subject to :
∑
e∈δ(S)

xe ≥ 1 for each S ⊆ V − {r} such that Xt ⊆ S for some 1 ≤ t ≤ k

x ≥ 0

(LP-GST)

25-1

25-2 Lecture 25: Group Steiner Tree

Using probabilistic embeddings of metrics into tree metrics and the fact that Group Steiner Tree in general
graphs reduces to Group Steiner Tree in metrics, this leads to the following bound.

Theorem 4 The integrality gap of (LP-GST) in general graphs is at most O(log n · log g · log k).

Naturally, since the rounding algorithm for trees runs in polynomial time then this leads to a polynomial-time
randomized O(log n · log g · log k)-approximation. There are some low-level details to fill in to properly show
how the gap bound for trees yields the gap bound in general metrics. The current assignment is asking you to
describe them.

For the rest of these notes, we focus on proving Theorem 3.

25.2 Group Steiner Tree in Trees

Suppose that G is a tree, which we now call T = (V,E). Let x∗ be an optimal solution to (LP-GST) in this
instance. We suppose that c(e) > 0 for each e ∈ E and that each node in each terminal group is a leaf in T (this
will simplify our discussion, and it is also true for the tree metrics obtained using the tree embedding algorithm
we discussed earlier).

Let Ei denote all edges at depth i of the tree (E1 are the edges incident to the root r) and say that h is the
height of T . Finally, for any edge e ∈ E such that e 6∈ E1, let p(e) ∈ Ei−1 be the parent edge of e.

Claim 1 In any optimal solution x∗ to (LP-GST), x∗e ≤ x∗p(e) for each e ∈ E−E1 and x∗e ≤ 1 for each e ∈ E.

Proof. Consider any terminal group Xt. By the max-flow/min-cut theorem and the constraints of (LP-GST),
we can send one unit of flow f t from the nodes in Xt to r such that f te ≤ x∗e.

Suppose x∗e > x∗p(e) where e′ is the parent edge of e. We claim that we can reduce x∗e to x∗p(e) and maintain

feasibility. Since all flow originating from nodes in Xt in the subtree under edge e must pass through p(e), then
f te ≤ f∗p(e) ≤ x∗p(e). Thus, reducing x∗e to x∗p(e) still supports f t. This holds for every terminal group, so the
modified LP solution is still feasible and has no greater cost.

If x∗e > 1 for some edge e, then clearly reducing x∗e to 1 maintains feasibility.

The main subroutine in our algorithm is Algorithm 1, which attempts to connect some terminal groups to r.

Algorithm 1 Main Subroutine for the Group Steiner Tree Rounding Algorithm

F ← ∅
for each e ∈ E1 do

add e to F with probability x∗e
end for
for i = 2, . . . h do
for each e ∈ Ei such that p(e) ∈ F do

add e to F with probability x∗e/x
∗
p(e) (c.f. Claim 1)

end for
end for
return F

Note that if x∗p(e) = 0 for some edge e ∈ E −E1 then p(e) will not be added to F so we never try to add e to F

with probability x∗e/x
∗
p(e).

Lecture 25: Group Steiner Tree 25-3

We will prove the following two statements.

Theorem 5 E[cost(F)] = OPTLP.

Theorem 6 For any group Xt, the probability that some F contains a path from r to some node in Xt is at
least 1

4(log2(4g)+1) .

For now, let us suppose these are true. Algorithm 2 below is the main algorithm.

Algorithm 2 Main Subroutine for the Group Steiner Tree Rounding Algorithm

Solve (LP-GST) (a min-cut algorithm can be used to separate the constraints)
F ′ ← ∅
∆← d4(log2(4g) + 1) ln(6k)e
for ∆ iterations do

Run Algorithm 1 and let F be the returned edges.
F ′ ← F ′ ∪ F

end for
if F is a feasible solution with cost ≤ 3 ·∆ ·OPTLP then
return F

else
Declare failure

end if

Clearly Algorithm 2 runs in polynomial time and the returned solution has cost O(log g · log k) if failure is not
declared.

Lemma 1 Algorithm 2 declares failure with probability at most 1/2.

Proof. Since F is the union of ∆ different calls to Algorithm 1, then by Lemma 5 the expected cost of F is
exactly ∆ ·OPTLP. By Markov’s inequality, Pr[cost(F) > 3 ·∆ ·OPTLP] ≤ 1/3.

By Theorem 6, the probability a particular group is not connected to r in any of the sets F found over all ∆
iterations is at most(

1− 1

4(log2(4g) + 1)

)∆

≤
(

1− 1

4(log2(4g) + 1)

)4(log2(4g)+1) ln(6k)

≤ e− ln(6k) =
1

6k
.

Since there are k groups, by the union bound the probability that some group is not connected is at most
k · 1/(6k) = 1/6. By the union bound again, the probability that either the cost exceeds 3 ·∆ ·OPTLP or that
F is not feasible is at most 1/3 + 1/6 = 1/2.

25.2.1 The Cost Bound

Theorem 5 follows immediately from the following observation.

Lemma 2 Consider Algorithm 1. For any edge e ∈ E, Pr[e ∈ F] = x∗e.

Proof. By induction on the depth of e. If e ∈ E1, this is immediate from the first loop of Algorithm 1.

25-4 Lecture 25: Group Steiner Tree

Suppose e ∈ Ei for i ≥ 2. By induction, we know Pr[p(e) ∈ F] = x∗p(e). Now, the events “e ∈ F” and

“e ∈ F and p(e) ∈ F” happen with the same probability because e can only be added to F if p(e) is in F .
Therefore we have

Pr[e ∈ F] = Pr[e ∈ F and p(e) ∈ F] = Pr[e ∈ F |p(e) ∈ F] · Pr[p(e) ∈ F] =
x∗e
x∗p(e)

· x∗p(e) = x∗e.

25.2.2 The Connection Probability Bound

Let Q(t) be the set of all paths from a node in Xt to r. Thus, |Q(t)| = |Xt|. We now focus on proving Theorem
6, which we do in two steps.

First, we show something slightly different. If x is such that 5x is a feasible LP solution with a few additional
properties, then the probability that Xt is connected to r after one call to Algorithm 1 is at least 1

4·(h+1) where

h is the height of the tree. Then we reduce the general case to this case with h = log2(4g).

From now on, we focus on a single terminal group Xt.

Theorem 7 Let x ∈ [0, 1]E satisfy:

• xe ≤
∑
e′ a leaf edge under e xe′ .

•
∑
e∈δ(S) x

t
e ≥ 1/4 for each Xt ⊆ S ⊆ V − {r}.

Then running Algorithm 1 with x instead of x∗ will connect Xt to r with probability at least 1
4·(h+1) where h is

the height of T .

The key property here is the first property. Intuitively, it says the following. For any edge e, if we are given
e ∈ F then we still expect at most one r −Xt path in F that uses e. This will be made formal in the proof.

Proof. We will show that the set of edges F sampled in Algorithm 1 will contain some P ∈ Q(t) as a subset
with probability at least 1/(4 ·(h+1)). Define the random variable Z to be the number of P ∈ Q(t) with P ⊆ F .
Thus, our goal is to show Pr[Z ≥ 1] ≥ 1/(4 · (h+ 1)).

As before, we have Pr[e ∈ F] = xe when running Algorithm 1 with x. Thus, for a given path P ∈ Q(t) where,
say, e(P) is the last edge on P we have Pr[P ⊆ F] = Pr[e(P) ∈ F] = xe(P). Thus,

E[Z] =
∑

P∈Q(t)

xe(P) =
∑

e∈δ(Xt)

≥ 1/4.

The last equality is because Xt is a set of leaf nodes in T .

While the expected number of paths r −Xt paths in F is at least 1/4 then intuitively one might expect that
there should be at least one path in F with reasonable probability (and our goal is quite modest: 1

4·(h+1)).

However, one potential problem is that most of the time there are no paths and just a small amount of the time
there are many paths. We will show this is not possible by placing an upper bound on E[Z|Z ≥ 1].

So, we proceed by noting

1/4 ≤ E[Z] = E[Z|Z = 0] · Pr[Z = 0] + E[Z|Z ≥ 1] · Pr[Z ≥ 1] = E[Z|Z ≥ 1] · Pr[Z ≥ 1].

It suffices to prove E[Z|Z ≥ 1] ≤ h+ 1. In fact:

Lecture 25: Group Steiner Tree 25-5

Claim 2 If for every P ∈ Q(t) we have E[Z|P ⊆ F] ≤ h+ 1 then E[Z|Z ≥ 1] ≤ h+ 1.

Proof. For every random variable Y we have E[Y]2 ≤ E[Y2]. So,

E[Z|Z ≥ 1]2 ≤ E[Z2|Z ≥ 1]

=
∑

P,P ′∈Q(t)

Pr[P, P ′ ⊆ F |Z ≥ 1]

=
∑

P∈Q(t)

Pr[P ⊆ F |Z ≥ 1] ·

 ∑
P ′∈Q(t)

Pr[P ′ ⊆ F |Z ≥ 1 ∧ P ⊆ F]

=

∑
P∈Q(t)

Pr[P ⊆ F |Z ≥ 1] ·

 ∑
P ′∈Q(t)

Pr[P ′ ⊆ F |P ⊆ F]

≤ (h+ 1) ·

∑
P∈Q(t)

Pr[P ⊆ F |Z ≥ 1]

= (h+ 1) · E[Z|Z ≥ 1]

The second last equality is because P ⊆ F if and only if both Z ≥ 1 and P ⊆ F (i.e. we are conditioning on
the same event). Simplifying shows E[Z|Z ≥ 1] ≤ h+ 1.

Now focus on a particular P ∈ Q(t). Let P = {e1, e2, . . . , ek} (where k ≤ h) and let Pi = {e1, . . . , ei} for
0 ≤ i ≤ k (here P0 is the trivial path that starts and ends at r). Now consider any P ′ ∈ Q(t) and say that
ei ∈ P ′ but ei+1 6∈ P ′. Then

Pr[P ′ ⊆ F |P ⊆ F] = Pr[P ′ ⊆ F |Pi ⊆ F] (25.1)

because the events that ei ∈ F is extended to P or to P ′ are independent. Similar to how we have Pr[e ∈ F] = xe,
we have Pr[P ′ ⊆ F |Pi ⊆ F] = xe(P ′)/xei .

Finally, let QP (t, i) denote all paths P ′ ∈ Q(t) with ei ∈ P ′ and ei+1 6∈ P ′. Note that each P ′ ∈ Q(t) lies in
exactly one of QP (t, 0), QP (t, 1), . . . , QP (t, k). So,

E[Z|P ⊆ F] =

k∑
i=0

∑
P ′∈QP (t,i)

Pr[P ′ ⊆ F |Pi ⊆ F] (by (25.1))

=

k∑
i=0

∑
P ′∈QP (t,i)

xe(P ′)/xei

≤
k∑
i=0

1

≤ h+ 1.

The first inequality is by the first assumption in the statement of the theorem we are proving (Theorem 7).

Putting this all together, we have shown 1/4 ≤ (h+ 1) · Pr[Z ≥ 1] which completes the proof of Theorem 7.

25.2.3 Reducing to the Conditions of Theorem 7

We will consider a series of reductions that eventually lead to an instance T ′ with values x that satisfy the
conditions of Theorem 7 with the height h of T ′ being at most log2(4g).

25-6 Lecture 25: Group Steiner Tree

I am attempting to be more precise in these notes than we were in the lectures, which is why the presentation
deviates significantly in some parts from what we saw in class.

Step 1 - Making T Binary
First, we convert T to a full binary tree (i.e. each non-leaf contains exactly two children). If some v 6= r contains
exactly one child edge e then we merge e and p(e) to a single edge with x∗-value x∗e. Similarly, if r has one child
edge e then simply remove r and make its child the root (we must have x∗e = 1 in this case). If v has more than
two child edges {e1, . . . , ea}, then create a new edge e′ and a new vertex v′, set x∗e′ = x∗p(e1), detach e2, . . . , ea
from v and attach them to v′, and finally connect v and v′ by e′ (if v = r then simply set x∗e′ = 1). It is easy to
check that running Algorithm 1 in either the original tree or in this binary tree does not change the probability
that r connects to Xt.

Aside - Reducing the x-Values
We consider the effect of reducing the LP-weight across edges, which will be used in a few subsequent steps.

Lemma 3 Suppose x satisfies x ≤ x∗ (on an edge-by-edge basis) and xe ≤ xp(e) for each e ∈ E−E1. Then the
probability of connecting r to Xt is no greater when using x in Algoritm 1 than when using x∗.

This seems intuitively true since decreasing the x-values should probably harm our chances of connecting, but
it takes a proof since the rounding algorithm divides by some x-values.

Proof. It suffices to prove this when xe 6= x∗e for exactly one edge e since we can then change the solution from
x∗e to x by changing the value of one edge at a time, starting with the lowest edges.

We take a slightly different view of Algorithm 1. For every edge e, we flip a coin Ce that is Heads with
probability xe/xp(e) (or simply xe if e is incident to the root r). Then we add e to F if every edge between e
and r had its coin come up Heads. This constructs the same set of paths with the same probability as before.

Consider these events:

• S, the event that F connects r to Xt (i.e. the algorithm “succeeds”).

• A, the event that F includes some P ∈ Q(t) where e 6∈ P .

• B, the event that all coins between p(e) and r come up Heads. If e is incident to the root then B always
happens.

Below we subscript probabilities with x∗ or x to indicate whether we are using x∗ or x in Algorithm 1. So, our
goal is to show Prx∗ [S] ≥ Prx[S].

If e is a leaf edge then we have Prx∗ [Ce′ = Heads] ≥ Prx[Ce′ = Heads] for every edge e′. In this case, it is
easy to see Prx∗ [S] ≥ Prx[S].

However, if e is not a leaf edge then we have Prx∗ [Ce′ = Heads] ≤ Prx[Ce′ = Heads] for every child edge e′ of
e. Still, we can show Prx∗ [S] ≥ Prx[S] in this case.

Note that if neither event A or B happen then S does not happen. Furthermore, if event A happens then event
S also happens. Thus,

Pr
x∗

[S] = Pr
x∗

[A] + Pr
x∗

[S|¬A ∧B] · Pr
x∗

[¬A ∧B]

= Pr
x

[A] + Pr
x∗

[S|¬A ∧B] · Pr
x

[¬A ∧B]

Lecture 25: Group Steiner Tree 25-7

The second equality is because the corresponding events only depend on the random coins for edges e′ that are
not e nor a child edge of e. All we have left to show is that Prx∗ [S|¬A ∧B] ≥ Prx[S|¬A ∧B].

Say e1, e2 are the two child edges of e. For i = 1, 2, let pi denote the probability that some P ∈ Q(t) with
ei ∈ P has all coins between e(P) and its edge just below ei come up “true”. If ei is a leaf edge then let pi = 1
if ei = e(P) for some P ∈ Q(t) and pi = 0 otherwise. Note that this probability is the same whether we are
running Algorithm 1 with either x∗ or x.

So, given ¬A∧B, we have S if and only if some P ∈ Q(t) with e ∈ P has all coins from e(P) up to and including
e flipped “true”. This happens exactly when Ce = Heads and for at least one i = 1, 2 we have Cei = “true′′

and some path P ∈ Q(t) with ei ∈ P has all coins up to the edge just before ei flipped to true. The probability
this happens under x∗ is exactly as follows, where we use x∗p(e) = 1 if e is incident to r:

x∗e
x∗p(e)

·
(
x∗e1
x∗e
· p1 +

x∗e2
x∗e
· p2 −

x∗e1 · x
∗
e2

x∗e · x∗e
· p1 · p2

)
= α− β

x∗e
.

Where both α and β are nonnegative terms that do not depend on x∗e. When x∗e is reduced to xe, we see this
probability does not increase, thus

Pr
x∗

[S|¬A ∧B] ≥ Pr
x

[S|¬A ∧B].

Step 2 - Reducing x∗ to a Flow
By the constraints of (LP-GST), we can send one unit of flow from Xt to r such that the amount of flow f te
sent across any edge e ∈ E is at most x∗e. Note that since f t is a flow then f

t

e =
∑
e′ a leaf edge under e f

t

e′ for any

e ∈ E. Furthermore, since it represents one unit of flow then
∑
e∈δ(S) f

t
e ≥ 1 for each Xt ⊆ S ⊆ V − {r}. By

Lemma 3, this does not increase the probability of connecting r to Xt.

Now we just have to reduce the height.

Step 3 - Rounding and Deleting Some Edges
For an edge e ∈ E, suppose 2−i ≤ f te < 2−i+1. Round f te down to 2i. Note that we still have

∑
e∈δ(S) f

t
e ≥ 1/2 for

each Xt ⊆ S ⊆ V −{r}. Finally, delete every edge whose rounded f t value is < 1/(4g) (recall |Xt| ≤ g). Let x′

denote the resulting values for the remaining edges. Since the scaled f t values still support 1/2 of a unit of Xt−r
flow and since this flow is sent along at most g paths, then we still have

∑
e∈δ(S) x

t
e ≥ 1/2 − |Xt|/(4g) ≥ 1/4.

By Lemma 3, this still does not increase the probability of connecting r to Xt.

Step 4 - Height Reduction
For any edge e such that x′e = x′p(e), simply contract e. Since e ∈ F if and only if p(e) ∈ F (because x′e/x

′
p(e) = 1)

then this does not change the probability of connecting r to Xt. Let T ′ be the resulting tree. However,

Lemma 4 The height of T ′ is at most log2(4g).

Proof. For any edge e let p(e) be its parent edge in T ′. We have x′e ≤ x′p(e)/2 because Step 4 had distinct

edges differing by a factor of at least 1/2 and the consolidation step ensures no edge has the same value as its
parent. Since 1/(4g) ≤ x′e ≤ 1 for each edge e then the height of the tree is at most log2(4g).

25-8 Lecture 25: Group Steiner Tree

Step 5 - Reducing to a Flow Again
Now we have a tree T ′ with height at most log2(4g) and corresponding x′ values with

∑
e∈S x

′
e ≥ 1/4 for any

Xt ⊆ S ⊆ V − {r}. Furthermore, the probability of connecting r to Xt in this tree using x is no greater than
connecting r to Xt in the original tree T under x∗. We had ensured the first condition of Theorem 7 held under
f t, but we may have lost that in the future reductions. However, we simply let x be 1/4 units of Xt − r flow
with xe ≤ x′e, which exists because

∑
e∈S x

′
e ≥ 1/4. Again, by Lemma 3 this does not increase the probability

of connecting r to Xt.

Note: I just noticed that the height reduction step has resulting height at most 4g + 1, not 4g. Furthermore,
the contraction may cause some Xt node to no longer be a leaf node. If we avoid contracting leaf nodes but do
everything else the same, then we can still say each node in Xt is a leaf and the height is at most 4g + 2 which
suffices to get the O(log g · log k) integrality gap bound.

I don’t want to go through and make the tiny changes in the analysis everywhere. Really, the only change to
the algorithm is that Algorithm 2 should use ∆← d4(log2(4g) + 3) ln(6k)e instead.

25.3 Discussion

The rounding algorithm for trees was described by Garg, Konjevod, and Ravi [GKR98]. In their analysis,
they use a concentration bound called Janson’s Inequality (not to be confused with Jenson’s), which is like a
Chernoff bound in settings with limited dependence. Our presentation follows analysis that is suggested by
Rothvoss [R11].

The integrality gap of (LP-GST) was shown to be Ω((log n/ log logn)2) in trees [H+03], which was later followed
by the hardness result in Theorem 2 [HK03].

An open problem is to get an O(log2 n)-approximation in general metrics. An O(log2 k)-approximation with
quasi-polynomial running time is known [CP05].

References

CP05 C. Chekuri and M. Pál, A recursive greedy algorithm for walks in directed graphs, In Proceedings of
FOCS, 2005.

GKR98 N. Garg, G. Konjevod, and R. Ravi, A polylogarithmic approximation algorithm for the group Steiner
tree problem, In Proceedings of SODA, 1998.

H+03 E. Halperin, G. Kortsarz, R. Krauthgamer, A. Srinivasan, and N. Wang, Integrality ratio for group Steiner
trees and directed Steiner trees, In Proceedings of SODA, 2003.

HK03 E. Halperin and R. Krauthgamer, Polylogarithmic inapproximability, In Proceedings of STOC, 2003.

R11 T. Rothvoss, Directed Steiner tree and the Lasserre hierarchy, CoRR, abs/1111.5473, 2011.

