
CMPUT 675 - Assignment #4

Fall 2014, University of Alberta
Due November 14 in class.

Pages: 4

This assignment is to be completed individually. I understand that you may want to discuss
the assignment with other students, a good guide for understanding my expectations is that you
should not take notes or work out precise details in your discussions (keep it high-level). Mention
any discussions and cite any resources you used on the writeup you hand in.

To be clear, whenever you are asked to give an approximation algorithm for a problem, it is expected
that you will both describe the algorithm and prove the claimed approximation guarantee. If you
can only think of an algorithm with a worse approximation guarantee than I am asking for, then
describe it anyway. You may get partial marks (though, it cannot be entirely trivial). The same
goes with lower bounds.

Problem 1)
Marks: 2

Say that an instance of Max 2SAT is balanced if every clause has exactly two literals (over different
variables) and the weight of all clauses in which the literal xi appears equals the weight of all clauses
in which the literal xi appears for each variable xi. Show that the standard hyperplane rounding
algorithm we used in the lecture for Max 2SAT in fact gives us a β-approximation for balanced
instances where β is defined below. [2 marks]

β := min
θ∈[0,π]

1
2 + 1

2π · θ
3
4 −

1
4 · cos θ

≈ 0.94394.

You do not have to prove the numerical estimate.

Problem 2)
Marks: 2

Recall the Group Steiner Tree problem from the lectures. Here, we have a graph G = (V,E)
with edge lengths d(e) ≥ 0, “groups” of nodes X1, X2, . . . , Xk ⊆ V , and a root node r. The goal is
to find the cheapest subset of edges F such that for each group Xi, there is a path from r to some
node in Xi in the graph (V, F ). The LP relaxation we considered is the following.
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minimize :
∑
e∈E

d(e) · xe

subject to :
∑
e∈δ(S)

xe ≥ 1 for each S ⊆ V − {r} such that Xi ⊆ X for some 1 ≤ i ≤ k

x ≥ 0
(LP-Q2)

We saw that the integrality gap of (LP-Q2) is O(log n · log k) (where n = |V |) if G is a tree. Using
tree embeddings, this lead to a randomized O(log2 n · log k)-approximation in general graphs.

Your job is to show that the integrality gap of (LP-Q2) is O(log2 n · log k) for any instance of
Group Steiner Tree. [2 marks]

Problem 3)
Marks: 4

In the Capacitated Dial-a-Ride problem, we are given a metric (V, d), a single vehicle with a given
integer capacity C ≥ 0 located at a given depot node r ∈ V , and k different clients. Each client i
is currently located at a vertex si ∈ V and needs to be transported to a location ti ∈ V .

The goal is to find the shortest tour that starts and ends at the depot r that transports clients
between their start locations and their end locations. We are allowed to drop clients off at inter-
mediate locations and then pick them up later in the tour. The only additional constraint is that
the vehicle can hold at most C clients at any time

• Suppose the metric is in fact a tree metric. Give a constant-factor approximation for this
case.
Hint: For each edge e, let `(e) denote the number of clients si, ti such that e lies on the path
between si and ti. Describe an algorithm that crosses each edge at most O(1) · `(e)/C times
and argue why this is a good approximation. [2 marks]

• Recall the random construction of a tree metric for (V, d) that we saw in class. It associated
every node u of the tree to a subset Su ⊆ V . Keeping this fact in mind (when dropping
off clients at intermediate nodes in your 2-approximation for trees), describe a randomized
O(log n)-approximation in general metrics. You may want to review other specific properties
of the tree metrics that are constructed in the randomized algorithm we saw in class. [2
marks]



Problem 4)
Marks: 4

Consider the following generalization of the local search heuristic for k-Median we saw in the
lectures. Recall that we let f(S) =

∑
j∈C d(j, S) for any subset S of facilities.

Let p be a constant. Initialize S to any set of k facilities. While there are some A ⊆ S and
B ⊆ V −S with |A| = |B| ≤ p such that f((S −A)∪B) < f(S), update S ← (S −A)∪B. Repeat
until no such improvements are possible and return this final set S.

Here, you will prove that f(S) ≤ (3 + 2
p) · OPT where S is any locally optimum solution with

respect to these swaps.

Recall the notation we used in the lecture. Let S∗ be an optimum solution, let σ : S∗ → S map
each facility in S∗ to its nearest facility in S, let φ∗ : C → S∗ map each client to its nearest facility
in S∗, and let φ : C → S map each client to its nearest facility in S.

This time, we partition S slightly differently into sets M,P,N . Let

• M = {i ∈ S : |σ−1(i)| ≥ p+ 1},

• P = {i ∈ S : 1 ≤ |σ−1(i)| ≤ p}, and

• N = {i ∈ S : |σ−1(i)| = 0}.

Partition S∗ into sets M∗, P ∗ where

• M∗ = {i ∈ S∗ : σ(i) ∈M} and

• P ∗ = {i ∈ S∗ : σ(i) ∈ P}.

This is sketched in Figure 1.
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Figure 1: Illustration of the partition of S and S∗ for p = 2. The downward pointing arrows
indicate the mapping σ. The sets N ′ and Ni are described below.



• Show |P |+ |N | ≥ |P ∗|. [0.5 marks]

• For each i ∈ P let Ni be any subset of N of size |σ−1(i)| − 1. Do this in way such that that
Ni′ ∩Ni′′ = ∅ for any two i′, i′′ ∈ P (the previous part ensures this is possible).

For each i ∈ P let Ai := {i} ∪Ni and Bi := σ−1(i), show the following holds. [1 mark]

0 ≤ f((S −Ai) ∪Bi)− f(S) ≤
∑

j:φ∗(j)∈Bi

(d∗j − dj) +
∑

j:φ(j)∈Ai

2d∗j

• Let N ′ = N − ∪i∈PNi be the set of facilities in N that were not involved in a swap in the

previous part. Show |M∗| ≤
(
p+1
p

)
· |N ′|. [0.5 marks]

• Let P = M∗ ×N ′ (i.e. all possible pairs). For every (i, i′) ∈ P we have

0 ≤ f(S − i′ + i)− f(S) ≤
∑

j:φ∗(j)=i

(d∗j − dj) +
∑

j:φ(j)=i′

2d∗j .

This was already proven in the lectures, you do not have to reprove it.

Use these test swaps and the test swaps in the previous part for i ∈ P to show f(S) ≤
(3 + 2

p) ·OPT . [2 marks]

Hint: You will want to scale the inequalities generated by the P swaps down by some
value when combining all of these inequalities.


