CMPUT 675 - Assignment #4

Fall 2014, University of Alberta
Due November 14 in class.

Pages: 4

This assignment is to be completed individually. I understand that you may want to discuss
the assignment with other students, a good guide for understanding my expectations is that you
should not take notes or work out precise details in your discussions (keep it high-level). Mention
any discussions and cite any resources you used on the writeup you hand in.

To be clear, whenever you are asked to give an approximation algorithm for a problem, it is expected
that you will both describe the algorithm and prove the claimed approximation guarantee. If you
can only think of an algorithm with a worse approximation guarantee than I am asking for, then
describe it anyway. You may get partial marks (though, it cannot be entirely trivial). The same
goes with lower bounds.

Problem 1)
Marks: 2

Say that an instance of MAX 2SAT is balanced if every clause has exactly two literals (over different
variables) and the weight of all clauses in which the literal x; appears equals the weight of all clauses
in which the literal T; appears for each variable x;. Show that the standard hyperplane rounding
algorithm we used in the lecture for MAX 2SAT in fact gives us a B-approximation for balanced
instances where £ is defined below. [2 marks]
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You do not have to prove the numerical estimate.

Problem 2)
Marks: 2

Recall the GROUP STEINER TREE problem from the lectures. Here, we have a graph G = (V, E)
with edge lengths d(e) > 0, “groups” of nodes Xi, Xo,..., X C V, and a root node r. The goal is
to find the cheapest subset of edges F' such that for each group X;, there is a path from r to some
node in X; in the graph (V, F'). The LP relaxation we considered is the following.



minimize : Z d(e) - e
eck
subject to : Z xe > 1 foreach S CV — {r} such that X; C X for some 1 <i <k
e€d(S)
x > 0
(LP-Q2)

We saw that the integrality gap of (LP-QZ2]|) is O(logn -logk) (where n = |V]) if G is a tree. Using
tree embeddings, this lead to a randomized O(log?n - log k)-approximation in general graphs.

Your job is to show that the integrality gap of (LP-Q2) is O(loan -log k) for any instance of
GROUP STEINER TREE. [2 marks]

Problem 3)
Marks: 4

In the Capacitated Dial-a-Ride problem, we are given a metric (V,d), a single vehicle with a given
integer capacity C' > 0 located at a given depot node r € V| and k different clients. Each client ¢
is currently located at a vertex s; € V' and needs to be transported to a location t; € V.

The goal is to find the shortest tour that starts and ends at the depot r that transports clients
between their start locations and their end locations. We are allowed to drop clients off at inter-
mediate locations and then pick them up later in the tour. The only additional constraint is that
the vehicle can hold at most C' clients at any time

e Suppose the metric is in fact a tree metric. Give a constant-factor approximation for this
case.
Hint: For each edge e, let ¢(e) denote the number of clients s;,¢; such that e lies on the path
between s; and ¢;. Describe an algorithm that crosses each edge at most O(1) - £(e)/C' times
and argue why this is a good approximation. [2 marks]

e Recall the random construction of a tree metric for (V,d) that we saw in class. It associated
every node u of the tree to a subset S, C V. Keeping this fact in mind (when dropping
off clients at intermediate nodes in your 2-approximation for trees), describe a randomized
O(log n)-approximation in general metrics. You may want to review other specific properties
of the tree metrics that are constructed in the randomized algorithm we saw in class. [2
marks]



Problem 4)
Marks: 4

Consider the following generalization of the local search heuristic for k-MEDIAN we saw in the

lectures. Recall that we let f(S) =3, d(j, S) for any subset S of facilities.

Let p be a constant. Initialize S to any set of k facilities. While there are some A C S and
B CV — S with |A| = |B| < p such that f((S—A)UB) < f(S), update S < (S — A) U B. Repeat
until no such improvements are possible and return this final set S.

Here, you will prove that f(S) < (3 4+ %) - OPT where S is any locally optimum solution with
respect to these swaps.

Recall the notation we used in the lecture. Let S* be an optimum solution, let o : §* — S map
each facility in S* to its nearest facility in S, let ¢* : C — S* map each client to its nearest facility
in S*, and let ¢ : C'— S map each client to its nearest facility in S.

This time, we partition S slightly differently into sets M, P, N. Let
e M={iecS:|o71(@)|>p+1},
e P={iceS:1<|o71(q)] <p}, and
e N=1{ieS:|o1(i)] =0}
Partition S* into sets M™*, P* where
o M*={ieS":0(i) € M} and
o P*={iec S*:0(i) € P}.
This is sketched in Figure
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Figure 1: Illustration of the partition of S and S* for p = 2. The downward pointing arrows
indicate the mapping . The sets N’ and N; are described below.



Show |P|+ |N| > |P*|. [0.5 marks]

For each i € P let N; be any subset of N of size |071(i)|] — 1. Do this in way such that that
Ny N Ny = () for any two i',i” € P (the previous part ensures this is possible).

For each i € P let A; := {i} UN; and B; := o~ 1(i), show the following holds. [1 mark]
0Sf(S—A)UB)—J()< 3 (d-d)+ > 2

J:¢*(§)€B; J:p(i)€A;
Let N' = N — U;epN; be the set of facilities in N that were not involved in a swap in the
previous part. Show |M*| < (p%) - |N'|. [0.5 marks]
Let P = M* x N’ (i.e. all possible pairs). For every (i,i') € P we have
0Sf(S—i'+i)—f(S)< D (d—dj)+ Y 2d.
Ji* (5)=i Jip(j)=1'
This was already proven in the lectures, you do not have to reprove it.

Use these test swaps and the test swaps in the previous part for ¢ € P to show f(S) <
3+ %) -OPT. [2 marks]

Hint: You will want to scale the inequalities generated by the P swaps down by some
value when combining all of these inequalities.



