Revised 27/07/03

Self-Reference - Re(:t_

Cmput 115 - Lecture 7
Department of Computing Science
University of Alberta
©Duane Szafron 1999

Outline

e Self-reference
® Recursive methods

e Computingthesum1+2+..n
recursively

® [nserting an element in a vector
recursively

e Stack frames
® A trace of recursion

Recursive Methods

® Recursion occurs when a method calls
itself, either directly or indirectly.
e [or recursion to terminate, two conditions
must be met:
— there must be one or more simple cases that
do not make recursive calls.

— the recursive call must somehow be simpler
than the original call so that they lead to the
base case.

About This Lecture

e |n this lecture we will learn about self-
reference.

e This powerful idea allows us to:
— Write self-referencing algorithms.
— Construct self-referencing objects.
— Prove properties about algorithms using

mathematical induction.

® n this lecture we will focus on self-

referencing Algorithms

Self-Reference

e Self-reference occurs when object refers to
itself or more generally to another object from
the same class.

e Self-reference also occurs when a method (or
algorithm) calls itself. Such a method is called
arecursive method.

e Self-reference also occurs when the proof of a
theorem relies on the application of the same
theorem to a simpler case. This situation is
called mathematical induction.

| BS80S

To write arecursive

® One needs to transform the given problem
into a same problem with a smaller size
such that the solution can be obtained
based on the solution to the smaller
problem.

® One needs to identify a boundary problem
with a simple solution (l.e., it can be
solved without recursion.)




Example

e To write a function to compute factorial(N)

— factorial (N) = factorial(N-1) * N
— Factorial (1)=1.

public static int factoria (int N) {
if(N==1)
return 1;
else
eturn N * function(N-1)

Recursive Sum Ex

e Write a method that computes the sum of the
integers from 1 to n.

e Note that:
1+2+...+n=(1+2+..+n-1)+n

public static int sun(int n) {
Il post: return the sumof ints from1 to the given val ue

if (n<1)
return 0;

el se
return sum(n - 1) + n;

Example

e To search an object in a list
— find (a, List)
e List=L1+L2
* Find(a,List) = find(a, L1) or find(a, L2)
— Termination
* Find(a, [a]) = yes,
* Find(a, [b]) =no

Recursive Element |

e In a recursive solution:

— The base case is if the insertion location is
after the last element (index == size); just
add the element using the
addElement(Object) method.

— Otherwise, take the element at the index and
insert it at the next location (index + 1)
using arecursive call; then put the new

ject at the index location.

10
e Recall the iterative implementation:
public void insertEl enent At (Cbj ect object, int index) {
Ilpre: 0 <= index <= size()
Ilpost: inserts the given object at the given index,
Il nmoving elenents fromindex to size()-1 to the right
int i;
thi s. ensur eCapacity(this. el ement Count + 1);
for (i =this.elementCount; i > index; i--)
this.elementDatal[i] = this.elementDatali - 1];
i s. el ement Dat a[i ndex] = object;
s. el enent Count ++,
[Ccode based on Bailey pg. 39 |
12

Recursive Element |




Multiple Activations

e When we invoke a recursive method on an
object, the method becomes active.

e Before it is finished, it makes a recursive
call to the same method.

e This means that when recursion is used,
there is more than one copy of the same
method active at once.

® Therefore, each active method has its own
frame which contains independent copies
of its direct references.

Recursive Vector In

e For example, insert “Wilma” at index 1.

13
e Here is a recursive implementation:
public void insertH ement At ((bject object, int index) {
Ilpre: 0 <= index <= size()
/lpost: inserts the given object at the given index,
Il noving elenments fromindex to size()-1 to the right
Cbj ect previous;
if (index >= this.size()
this. addEl ement (obj ect);
el se {
previous = this.el enentAt (index);
this.insertEl enent At (previous, index + 1);
) set El enent At (obj ect, index);
}
| e s I
15
e Each frame has its own pseudo-variable, t hi s,
but since the recursive calls all have the same
receiver, all "this" variables are bound to the
same object.
e Each frame has two parameters, object and
index.
e Each frame has its local variable, previous, bound
to a different object.
® These frames all exist at the same time.
| BS80S
17
Cdling insertElementA

if (index >= this.size())
thi s. addEl enent (obj ect);

el se {
previous = this. el ementAt (index);
this.insertEl ement At (previous, index + 1);

this aVect
object
index
previous

Cdling insertElementA

if (index >= this.size())
thi s. addEl enent (obj ect);
el se {
previous = this.el ement At (index);
this.insertEl ement At (previous, index + 1);

this
object
index
previous




Caling insertEl ementAti

if (index >= this.size())
thi s. addEl enent (obj ect);

else {

previous = this. el ement At (index);
this.insertEl ement At (previous, index + 1);

previous

Returning insertElem

if (index >= this.size())
thi s. addEl enent (obj ect);

el se {

previous = this.el ementAt (index);
this.insertEl ement At (previous, index + 1);

this
object
index
previous

Returning insertElem

if (index >= this.size())
thi s. addEl enent (obj ect);

el se {
previous = this.el ementAt (index);
this.insertEl ement At (previous, index + 1);
set El enent At (obj ect, index);

previous

Returning insertEl em_

if (index >= this.size())
thi s. addEl enent (obj ect);

el se {
previous = this. el ement At (index);
this.insertEl ement At (previous, index + 1);
set El enent At (obj ect, index);

this 1
object
index

previous

Recursive Vector In

e After, inserting “Wilma” at index 1.




