
1

Self-Reference - Recursion

Cmput 115 - Lecture 7

Department of Computing Science

University of Alberta

©Duane Szafron 1999
Some code in this lecture is based on code from the book:

Java Structures by Duane A. Bailey or the companion structure package

Revised 27/07/03 2

About This Lecture

� In this lecture we will learn about self-
reference.

� This powerful idea allows us to:
– Write self-referencing algorithms.
– Construct self-referencing objects.
– Prove properties about algorithms using

mathematical induction.
� In this lecture we will focus on self-

referencing Algorithms

3

Outline

� Self-reference
� Recursive methods
� Computing the sum 1 + 2 + … n

recursively
� Inserting an element in a vector

recursively
� Stack frames
� A trace of recursion

4

Self-Reference

� Self-reference occurs when object refers to
itself or more generally to another object from
the same class.

� Self-reference also occurs when a method (or
algorithm) calls itself. Such a method is called
a recursive method.

� Self-reference also occurs when the proof of a
theorem relies on the application of the same
theorem to a simpler case. This situation is
called mathematical induction.

5

Recursive Methods
� Recursion occurs when a method calls

itself, either directly or indirectly.
� For recursion to terminate, two conditions

must be met:
– there must be one or more simple cases that

do not make recursive calls.
– the recursive call must somehow be simpler

than the original call so that they lead to the
base case.

6

To write a recursive function

� One needs to transform the given problem
into a same problem with a smaller size
such that the solution can be obtained
based on the solution to the smaller
problem.

� One needs to identify a boundary problem
with a simple solution (I.e., it can be
solved without recursion.)

2

7

Example

� To write a function to compute factorial(N)

public static int factorial (int N) {
i f (N == 1)
return 1;

else
return N * function(N-1)

}

– factorial (N) = factorial(N-1) * N
– Factorial (1) = 1.

8

Example
� To search an object in a list

– find (a, List)
• List = L1 + L2
• Find(a,List) = find(a, L1) or find(a, L2)

– Termination
• Find(a, [a]) = yes,
• Find(a, [b]) = no

9

Recursive Sum Example
� Write a method that computes the sum of the

integers from 1 to n.
� Note that:

1 + 2 + … + n = (1 + 2 + … + n-1) + n

public static int sum(int n) {
// post: return the sum of ints from 1 to the given value

if (n < 1)
return 0;

else
return sum(n - 1) + n;

}

code based on Bailey pg. 59

10

Vector Element Insertion

� Recall the iterative implementation:
public void insertElementAt(Object object, int index) {
//pre: 0 <= index <= size()
//post: inserts the given object at the given index,
// moving elements from index to size()-1 to the right

int i;

this.ensureCapacity(this.elementCount + 1);
for (i = this.elementCount; i > index; i--)

this.elementData[i] = this.elementData[i - 1];

this.elementData[index] = object;

this.elementCount++;

}

code based on Bailey pg. 39

11

Recursive Element Insertion - 1
� In a recursive solution:

– The base case is if the insertion location is
after the last element (index == size); just
add the element using the
addElement(Object) method.

– Otherwise, take the element at the index and
insert it at the next location (index + 1)
using a recursive call; then put the new
object at the index location.

code based on Bailey pg. 60

12

Recursive Element Insertion - 2

code based on Bailey pg. 60

“ Wilma”

0 1 2 3

“ Fred” “ Barney” “ Betty” null

3

13

Recursive Element Insertion - 3
� Here is a recursive implementation:

public void insertElementAt(Object object, int index) {
//pre: 0 <= index <= size()
//post: inserts the given object at the given index,
// moving elements from index to size()-1 to the right

Object previous;

if (index >= this.size())
this.addElement(object);

else {
previous = this.elementAt(index);
this.insertElementAt(previous, index + 1);
setElementAt(object, index);

}
}

code based on Bailey pg. 60

14

Multiple Activations of a Method

� When we invoke a recursive method on an
object, the method becomes active.

� Before it is finished, it makes a recursive
call to the same method.

� This means that when recursion is used,
there is more than one copy of the same
method active at once.

� Therefore, each active method has its own
frame which contains independent copies
of its direct references.

15

Stack Frames for InsertElementAt
� Each frame has its own pseudo-variable, this,

but since the recursive calls all have the same
receiver, all " this" variables are bound to the
same object.

� Each frame has two parameters, object and
index.

� Each frame has its local variable, previous, bound
to a different object.

� These frames all exist at the same time.

16

Recursive Vector Insertion Example
� For example, insert “ Wilma” at index 1.

“ Wilma”

aVector
elementData

elementCount

anArray
0 1 2 3

“ Fred” “ Barney” “ Betty” null

3

17

Calling insertElementAt(“Wilma” , 1)

if (index >= this.size())
this.addElement(object);

else {
previous = this.elementAt(index);
this.insertElementAt(previous, index + 1);

this
object
index

previous

aVector
elementData

elementCount

anArray
0 1 2 3

“Fred” “Barney” “Betty” null

3

“Wilma”

1

code based on Bailey pg. 60

18

Calling insertElementAt(“Barney” , 2)

if (index >= this.size())
this.addElement(object);

else {
previous = this.elementAt(index);
this.insertElementAt(previous, index + 1);

this
object
index

previous
aVector

elementData

elementCount

anArray
0 1 2 3

“Fred” “Barney” “Betty” null

3

“Wilma”

1

this
object
index

previous

2

code based on Bailey pg. 60

4

19

Calling insertElementAt(“Betty” , 3)

if (index >= this.size())
this.addElement(object);

else {
previous = this.elementAt(index);
this.insertElementAt(previous, index + 1);

this
object
index

previous
aVector

elementData

elementCount

anArray
0 1 2 3

“Fred” “Barney” “Betty” null

3

“Wilma”

1

2

this
object
index

previous

this
object
index

previous

3

4

code based on Bailey pg. 60

20

Returning insertElementAt(“Betty” , 3)

if (index >= this.size())
this.addElement(object);

else {
previous = this.elementAt(index);
this.insertElementAt(previous, index + 1);

this
object
index

previous
aVector

elementData

elementCount

anArray
0 1 2 3

“Fred” “Barney” “Betty”

4

“Wilma”

1

2

this
object
index

previous

this
object
index

previous

3

code based on Bailey pg. 60

21

Returning insertElementAt(“Barney” , 2)

if (index >= this.size())
this.addElement(object);

else {
previous = this.elementAt(index);
this.insertElementAt(previous, index + 1);
setElementAt(object, index);

}

this
object
index

previous
aVector

elementData

elementCount

anArray
0 1 2 3

“Fred” “Barney” “Betty”

4

“Wilma”

1

this
object
index

previous

2

code based on Bailey pg. 60

22

Returning insertElementAt(“Wilma” , 1)

if (index >= this.size())
this.addElement(object);

else {
previous = this.elementAt(index);
this.insertElementAt(previous, index + 1);
setElementAt(object, index);

}

this
object
index

previous

aVector
elementData

elementCount

anArray
0 1 2 3

“Fred” “Barney” “Betty”

4

“Wilma”

1

code based on Bailey pg. 60

23

Recursive Vector Insertion Done
� After, inserting “ Wilma” at index 1.

“ Wilma”

aVector
elementData

elementCount

anArray
0 1 2 3

“ Fred” “ Barney” “ Betty”

4

