Loop Formulas for Description Logic Programs

Yisong Wang1, Jia-Huai You2, Li-Yan Yuan2, Yidong Shen3

1 Guizhou University, China
2 University of Alberta, Canada
3 Institute of Software, Chinese Academy of Sciences, China

26th Int’l Conference on Logic Programming
1 Motivation

2 Preliminary
 - Description logic programs

3 Completion and Loop Formulas
 - Completion
 - Weak loop formulas
 - Strong loop formulas

4 Canonical Answer Sets

5 Related Work and Conclusions
Integration of (nonmonotonic) rules and ontologies/description logics

- **The Semantic Web**: provides meanings of information and services on WWW, based on a layered structure with rules on top of ontologies.

- **Default/Typicality** reasoning with ontologies

- **Natural Kinds**: e.g., What is a computer scientist?
Description Logics (DLs) and Answer Set Programming

Description Logics
- Logic formalisms for Ontologies by concepts, roles and individuals, and their relationships
- DLs are fragments of first-order logic, but have more efficient decision problems.
- Concepts can be composed (such as $\text{Student} \sqcap \text{Employed}$)
- A DL knowledge base is a set of inclusion axioms (such as $\text{partTimeStudent} \sqsubseteq \text{Student}$) and assertions (e.g. $C(a)$, $R(b, c)$).

Answer Set Programming
Rules of the form (sometime disjunctive rules)

$$A \leftarrow B_1, \ldots, B_m, \text{not } C_1, \ldots \text{not } C_n$$

where A, B_i, and C are atoms.
Current Approaches

1. **The Tight Approach**: DL and rules in the same language, e.g. MKNF knowledge bases (Motik and Rosati 2010).

2. **The Hybrid Approach**: DL + hybrid rules (Rosati ’05, ’06), can be formulated as a variant of Quantified Equilibrium Logic (de Bruijn et al. ’07),

3. **The Loose Approach**: Description Logic Programs: a loose integration of answer set programming with description logics (Eiter et al. ’08)
A dl-program is a pair \((O, P)\), where \(O\) is a description logic knowledge base and \(P\) a finite set of rules of the form:

\[A \leftarrow B_1, \ldots, B_m, \text{not } C_1, \ldots, \text{not } C_n \]

where \(A\) is an atom and each \(B_i\) or \(C_i\) is an atom or a dl-atom.

- Eiter et al. defined weak and strong answer sets; some weak answer sets have "self-supports".
- We discovered that some strong answer sets may also have self-supports.
- We study semantics of dl-programs by loop completion.
- Use loop formulas to characterize answer sets, particularly those that are free of self-supports.
Definitions

DL-Atom:

A *dl-atom* is an expression of the form

\[DL[S_1 \ op_1 \ p_1, \ldots, S_m \ op_m \ p_m; Q](\vec{t}), \]

where

- each \(S_i \) is either a concept, a role or a special symbol in \(\{ \approx, \not\approx \} \); \(\text{op}_i \in \{ \oplus, \odot, \ominus \} \)
- \(p_i \) is a unary predicate symbol in \(\mathcal{P} \) if \(S_i \) is a concept, and a binary predicate symbol in \(\mathcal{P} \) otherwise.
- \(Q(\vec{t}) \) is a *dl-query*, i.e., a query on a concept, role, inclusion (e.g. \(C \sqsubseteq D \)), or their negations.
Examples

Example 1

\[DL[\textit{Student} \oplus \textit{registered}; \textit{Student}](a) \]

Assuming, for any individual \(x \), if \(x \) is registered for a course (information outside ontology) then \(x \) is a student (\(x \) may not be a student in ontology), and we query if \(\text{Student}(a) \).

Example 2

\[DL[\textit{Student} \ominus \textit{registered}; \neg \textit{Student} \sqcap \neg \textit{Employed}](a) \]

queries if \([\neg \text{Student} \sqcap \neg \text{Employed}](a) \)
An interpretation I of a dl-program $\mathcal{K} = (O, P)$ is a subset of HB_P (the Herbrand base of P), which is a model of an atom or dl-atom A, denoted by $I \models_O A$:

- if $A \in HB_P$, then $I \models_O A$ iff $A \in I$;
- if A is a dl-atom $DL(\lambda; Q)(\vec{t})$, then $I \models_O A$ iff $O(I; \lambda) \models Q(\vec{t})$ where $O(I; \lambda) = O \cup \bigcup_{i=1}^{m} A_i(I)$ and, for $1 \leq i \leq m$,

$$A_i(I) = \begin{cases}
\{ S_i(\vec{e}) \mid p_i(\vec{e}) \in I \}, & \text{if } op_i = \oplus; \\
\{ \neg S_i(\vec{e}) \mid p_i(\vec{e}) \in I \}, & \text{if } op_i = \ominus; \\
\{ \neg S_i(\vec{e}) \mid p_i(\vec{e}) \not\in I \}, & \text{if } op_i = \ominus.
\end{cases}$$
Weak Answer Set

Notation: Donate a rule by $A \leftarrow Pos, not\ Neg$.

The weak dl-transform of a dl-program $\mathcal{K} = (O, P)$, relative to O and an interpretation $I \subseteq HB_P$, denoted by $\mathcal{K}^{w,I}$, is the positive dl-program (O, wP^I_O), where wP^I_O is obtained from P by deleting:

- the dl-rules s.t. either $I \not\models_O B$ for some dl-atom $B \in Pos$, or $I \models_O C$ for some $C \in Neg$; and
- the dl-atoms and not A from the remaining dl-rules where A is an atom or dl-atom.

I is a weak answer set of \mathcal{K} if I is the least model of $\mathcal{K}^{w,I}$.
Let $\mathcal{K} = (O, P)$ where

$$O = \{C \sqsubseteq G\} \text{ and } P = \{p(a) \leftarrow DL[C \oplus p; G](a)\}.$$

\mathcal{K} has two weak answer sets, $M_1 = \emptyset$ and $M_2 = \{p(a)\}$.

Imagine the situation:

- $p(x)$: x is accepted to the TPLP Special Issue of ICLP2010.
- $C(x)$: x is an ICLP paper
- $G(x)$: x is a good paper
- a stands for "this paper"

The weak answer set $\{p(a)\}$ is "circularly justified".
The **strong dl-transform** of a dl-program $\mathcal{K} = (O, P)$, relative to O and an interpretation $I \subseteq HB_P$, denoted by $\mathcal{K}^{s,I}$, is the positive dl-program (O, sP^I_O), where sP^I_O is obtained from P by deleting:

- the dl-rules s.t. either $I \not\models_O B$ for some nonmonotonic $B \in Pos$, or $I \models_O C$ for some $C \in Neg$; and
- the nonmonotonic dl-atoms and *not* A from the remaining dl-rules where A is an atom or dl-atom.

I is a **strong answer set** of \mathcal{K} if it is the least model of $\mathcal{K}^{s,I}$.
Characterization of Weak and Strong Answer Sets

- The idea [Lin and Zhao 2002]: The answer sets of a normal program can be characterized by models of Clark’s predicate completion satisfying its loop formulas.
- ASP solvers ASSAT and CMODELS are built on this idea.
- Loop formulas have been defined for a number of extensions of normal programs.

The completion of a dl-program $\mathcal{K} = (O, P)$ is defined as usual by regarding dl-atoms as formulas. Then, the models of the completion of \mathcal{K} are supported models.
The **weak positive dependency graph** of \(\mathcal{K} \), written \(G^w_K \), is the directed graph \((HB_P, E)\) where \((u, v) \in E\) if \(P \) has a dl-rule with the head \(A = u \) and \(v \in Pos \).

A nonempty subset \(L \) of \(HB_P \) is a **weak loop** of \(\mathcal{K} \) if there is a cycle in \(G^w_K \) which goes through only and all the nodes in \(L \).

The **weak loop formula** of a weak loop \(L \), written \(wLF(L, \mathcal{K}) \), is:

\[
\bigvee L \supset \bigvee_{1 \leq i \leq n} \left(\bigwedge_{B \in \text{Pos}_i} B \land \bigwedge_{C \in \text{Neg}_i} \neg C \right)
\]

where \((h_1 \leftarrow \text{Pos}_1, \text{not Neg}_1), \ldots, (h_n \leftarrow \text{Pos}_n, \text{not Neg}_n)\) are all the rules in \(P \) such that \(h_i \in L \) and \(\text{Pos}_i \cap L = \emptyset \).
The **strong positive dependency graph** of \mathcal{K}, denoted by $G^s_{\mathcal{K}}$, is the directed graph (HB_P, E), where $(p(\vec{c}), q(\vec{c}')) \in E$ if P has a rule with head $A = p(\vec{c})$ and, for some $B \in Pos$, either

1. $B = q(\vec{c}')$, or
2. B is a monotonic dl-atom mentioning the predicate q and \vec{c}' is a tuple of constants matching the arity of q.

The **strong loop formula** of L, written $sLF(L, \mathcal{K})$, is:

$$\bigvee L \supset \bigvee_{1 \leq i \leq n} \left(\bigwedge_{B \in Pos_i} \gamma(B, L) \land \bigwedge_{C \in Neg_i} \neg C \right)$$

where $\gamma(Q, L) = IF(Q, L)$ if Q is monotonic, and Q otherwise.
Example

Consider the weak answer set \{p(a)\} of program \((\emptyset, P)\), where \(P\) is the single rule program

\[p(a) \leftarrow DL[c \oplus p; c](a) \]

Let \(A = DL[c \oplus p; c](a)\) and \(L = \{p(a), p(b)\}\)

Then, \(IF(A, L)\) is the formula:

\[DL[c \oplus p_L; c](a) \land (p_L(a) \leftrightarrow p(a) \land a \neq a) \land (p_L(b) \leftrightarrow p(b) \land a \neq b) \]

which is equivalent to

\[DL[c \oplus p_L; c](a) \land \neg p_L(a) \land (p_L(b) \leftrightarrow p(b)) \]
Let $\mathcal{K} = (O, P)$ be a dl-program and $I \subseteq HB_P$.

Theorem

I is a weak answer set of \mathcal{K} iff $I \models_O \text{COMP}(P) \cup \text{wLF}(\mathcal{K})$ where $\text{wLF}(\mathcal{K})$ is the set of weak loop formulas of all weak loops of \mathcal{K}.

Theorem

I is a strong answer set of \mathcal{K} iff $I^* \models_O \text{COMP}(P) \cup \text{sLF}(\mathcal{K})$ such that I^* is the extension of I where $\text{sLF}(\mathcal{K})$ is the set of strong loop formulas of all strong loops of \mathcal{K}.

The above two theorems suggest an alternative approach to computing the weak and strong answer sets of dl-programs: SAT solvers + DL-reasoners.
Example

Let $\mathcal{K} = (\emptyset, P)$ where P consists of

\[p(a) \leftarrow \text{not} \ DL[c \ominus p; \neg c](a). \]

\mathcal{K} has a strong answer set \{p(a)\} where p(a) is "justified" by:

\[p(a) \Rightarrow \text{not} \ DL[c \ominus p; \neg c](a) \Rightarrow p(a). \]

- Weak answer sets allow self-supporting loops involving any dl-atoms (either monotonic or nonmonotonic);
- Strong answer sets allow self-supporting loops only involving nonmonotonic dl-atoms and their default negations.
The canonical dependency graph of a dl-program $\mathcal{K} = (O, P)$, written $G^c_{\mathcal{K}}$, is the directed graph (HB_P, E), where $(u, v) \in E$ if there is a rule with head $A = u$ and there exists an interpretation $I \subseteq HB_P$ such that either:

1. $I \not\models_O B$ and $I \cup \{v\} \models_O B$, for some $B \in Pos$, v is called a positive monotonic (resp., nonmonotonic) dependency of B if B is a monotonic (resp., nonmonotonic) dl-atom, or
2. $I \models_O B$ and $I \cup \{v\} \not\models_O B$, for some $B \in Neg$. v is called a negative nonmonotonic dependency of B.
Examples of Dependencies

Let $\mathcal{K} = (O, P)$ be a dl-program where $O = \emptyset$ and P consists of

$p(a_1) \leftarrow DL[c \oplus p, c](a_1),$
$p(a_2) \leftarrow DL[c \oplus p, b \oplus q; c \land \neg b](a_2),$
$p(a_3) \leftarrow not DL[c \ominus p, \neg c](a_3),$
$p(a_4) \leftarrow p(a_4).$

The weak (strong and canonical) dependency of \mathcal{K} is illustrated by the following figure

Figure: The positive dependency relations on HB_P
Example

Let $\mathcal{K} = (\emptyset, P)$ and $I = \{p(a)\}$ where

$$P = \{p(a) \leftarrow \text{not } DL[c \oplus p, \neg c](a)\}$$

Note that $I \models_o \text{COMP}(\mathcal{K})$. However I is not a canonical answer set of \mathcal{K} because \mathcal{K} has a canonical loop $L = \{p(a)\}$ and $cLF(L, I, \mathcal{K})$ is equivalent to

$$p(a) \supset \neg DL[c \oplus p_L; \neg c](a) \land (p_L(a) \leftrightarrow p(a) \land (a \neq a))$$
Proposition

Let $\mathcal{K} = (O, P)$ be a dl-program.

1. If I is a canonical answer set of \mathcal{K} then I is minimal in the sense that \mathcal{K} has no canonical answer set I' such that $I' \subseteq I$.

2. If $I \subseteq HB_P$ is a canonical answer set of \mathcal{K} then I is noncircular (the notion of ”circularity” extended from [Falimeri et al. ’05].

3. If $I \subseteq HB_P$ is a canonical answer set of \mathcal{K} then I is a strong answer set of \mathcal{K}.

4. If P does not mention the operator \ominus then $I \subseteq HB_P$ is a canonical answer set of \mathcal{K} if and only if I is a strong answer set of \mathcal{K}.
The relationships among different proposals are not clear:

- It is known how to translate dl-programs (mentioning no \ominus) to MKNF knowledge bases, but it’s unclear how to deal with \ominus;
- A variant of Quantified Equilibrium Logic (QEL) captures the existing hybrid approaches, the relation between dl-programs and QEL or first-order theories is not known, thus it’s unclear whether any existing result on loop formulas (e.g. [Lee and Meng ’08]).
Conclusions

1. We generalized the notions of loops and loop formulas of ASP to dl-programs to characterize weak and strong answer sets.
2. We proposed a new characterization of answer sets for dl-programs – canonical answer sets which are free of circular justifications.
3. The proposed notion of loop formula reveals some essential differences among weak, strong and canonical answer sets of dl-programs.

Future Work

- Does there exist a definition of canonical answer set without using loop formulas?
- The complexity of the new semantics?
- How exactly can one build a system using a SAT solver and a DL-reasoner?