Normal Description Logic Programs as Default Theories

Yisong Wang Jia-Huai You Liyan Yuan Yi-Dong Shen

Nonmon@30
Lexington, Kentucky
Applications of ASP/SAT fall into ...

1. **Stand alone** applications
2. **ASP/SAT embedded** in a larger application; e.g., Eclipse
3. **ASP as a host language**, with other special inference mechanisms embedded
 - Logic programs with constraints;
 - Integration of nonmonotonic rules with special theories (ontologies/description logics)
Integration of rules and ontologies/description logics

- Ontologies are knowledge bases; can be expressed by description logics in which one defines concepts, roles and individuals, and their relationships.
- Knowledge in an ontology can be enhanced by knowledge external to it
- Rules are commonly recognized forms of reasoning
- Default/Typicality reasoning with ontologies
- Natural Kinds; e.g., What is a scientist?
Current Approaches

1. **The Full Approach**: DL and rules in the same language, e.g., MKNF knowledge bases (Motik and Rosati 2010).

2. **The Tight (Hybrid) Approach**: e.g., DL + hybrid rules (Rosati '05, '06), (de Bruijn et al. '07)

3. **The Loose Approach**: DL-Programs (Eiter et al. '08)

However,

- There is little insight on the relationships among different approaches.

- Default logic seems to be a natural candidate but its potential has not been explored.
Contributions

We formulate two translations from description logic programs (dl-programs) to default theories

1. To eliminate the constraint operator from a (normal) dl-program so that all dl-atoms become monotonic. (A dl-program is normal if there are no monotonic dl-atoms that mention the constraint operator ⊖).

2. To translate a dl-program to a default theory such that
 - if the dl-program is normal, combined with the first translation, the translated default theory preserves strong answer sets;
 - for an arbitrary dl-program, the default extensions of its default translation correspond to strong answer sets.
The Loose Approach

A **dl-program** is a pair \((O, P)\), where \(O\) is a description logic knowledge base and \(P\) a finite set of rules of the form:

\[
A \leftarrow B_1, \ldots, B_m, \text{not } B_{m+1}, \ldots, \text{not } B_n \tag{1}
\]

where \(A\) is an atom, each \(B_i\) is an atom or a **dl-atom**.

Notation

- \(C\): a finite set of constants, which is a subset of those in \(O\).
- \(\Sigma\): a finite set of predicate symbols disjoint from those in \(O\).
- \(HB_P\): the **Herbrand base** of \(P\), which is the set of atoms formed from the predicate symbols of \(\Sigma\) and the constants of \(C\). An **interpretation** is a subset of \(HB_P\). (Let's consider only those symbols appearing in \(P\).)
DL-Atom: A form of meta-level atom

A *dl-atom* is an expression of the form

\[
DL[S_1 \ op_1 \ p_1, \ldots, S_m \ op_m \ p_m; Q](\vec{t}), \ (m \geq 0) \tag{2}
\]

where

- each \(S_i\) is either a concept, a role or a special symbol in \(\{\approx, \not\approx\}\);
- \(op_i \in \{\oplus, \odot, \ominus\}; \ominus\) is called the *constraint operator*;
- \(p_i\) is a predicate symbol in \(\Sigma\) matching its arity to that of \(S_i\);
- \(Q(\vec{t})\) is a *dl-query*, i.e., it may query a membership of a concept, a role, an concept inclusion, an equality and their negations, etc.
An interpretation I is a model of an atom or dl-atom A under O, written $I \models_O A$, if the following holds:

- if $A \in HB_P$, then $I \models_O A$ iff $A \in I$;
- if A is a dl-atom $DL(\lambda; Q)(\vec{t})$ of the form (2), then $I \models_O A$ iff $O(I; \lambda) \models Q(\vec{t})$ where $O(I; \lambda) = O \cup \bigcup_{i=1}^{m} A_i(I)$ and, for $1 \leq i \leq m$,

$$A_i(I) = \begin{cases}
\{S_i(\vec{e})|p_i(\vec{e}) \in I\}, & \text{if } op_i = \oplus; \\
\{\neg S_i(\vec{e})|p_i(\vec{e}) \in I\}, & \text{if } op_i = \ominus; \\
\{\neg S_i(\vec{e})|p_i(\vec{e}) \notin I\}, & \text{if } op_i = \ominus;
\end{cases}$$

where \vec{e} is a tuple of constants over C.
Notation

\(DL_?^K \): the set of nonmonotonic dl-atoms in a dl-program \(DL^K \).

The **strong dl-transform** of \(K \) relative to \(O \) and an interpretation \(I \subseteq HB_P \), denoted \(K^{s,I} \), is the positive dl-program \((O, sP^I_O) \), where \(sP^I_O \) is obtained from \(P \) by deleting:

- the dl-rule \(r \) of the form (1) s.t. either \(I \not\models_O B_i \) for some positive \(B_i \in DL_?^K \), or \(I \models_O B_j \) for some negative atom or dl-atom \(B_i \); and
- the nonmonotonic dl-atoms and **not** \(A \) from the remaining dl-rules where \(A \) is an atom or dl-atom.

An interpretation \(I \) is a **strong answer set** of \(K \) if it is the least model of \(K^{s,I} \).
Example

Consider $\mathcal{K} = (O, P)$ where $O = \emptyset$ and

$$P = \{p(a) \leftarrow DL[c \oplus p, b \ominus q; c \sqcap \neg b](a)\}$$

Both \emptyset and $\{p(a)\}$ are strong answer sets of \mathcal{K}.
Deleting constraint operator

Let $\mathcal{K} = (O, P)$ be a dl-program and $r \in P$ a dl-rule. We define $\pi(r)$ to be a set of rules as follows:

(i) if r is of the form $(h \leftarrow \text{not } DL[\lambda; Q](\vec{t}))$, where $DL[\lambda; Q](\vec{t})$ is a nonmonotonic dl-atom, then $\pi(r)$ consists of rule (3) below and the instantiations of rules of the form (4):

\begin{align*}
 h & \leftarrow \text{not } DL[\lambda'; Q](\vec{t}), \\
 p'_i(\vec{X}_i) & \leftarrow \text{not } p_i(\vec{X}_i), \quad (1 \leq i \leq k)
\end{align*}

where p_i are all the predicate symbols occurring in λ in the form of $S_i \ominus p_i$ for some S_i, and λ' is obtained from λ by replacing “$S_i \ominus p_i$” with “$S_i \odot p'_i$”, where p'_i is a fresh predicate symbol matching the arity of p_i;
(ii) if \(r \) is of the form \((h \leftarrow DL[\lambda; Q](\vec{t})) \), where \(DL[\lambda; Q](\vec{t}) \) is a nonmonotonic dl-atom, then \(\pi(r) \) consists of

\[
\begin{align*}
 h & \leftarrow \text{not } h', \\
 h' & \leftarrow \text{not } DL[\lambda'; Q](\vec{t}),
\end{align*}
\]

and the instantiated rules obtained from (4), where \(\lambda' \) is the same as before and \(h' \) is a fresh atom.

(iii) otherwise, \(\pi(r) = \{r\} \).
Example

Consider again $\mathcal{K} = (\emptyset, P)$ where

$$P = \{ p(a) \leftarrow DL[c \oplus p, b \ominus q; c \cap \neg b](a) \}$$

$\pi(\mathcal{K}) = (\emptyset, \pi(P))$ where $\pi(P)$ is

$$\left\{ \begin{array}{l}
p(a) \leftarrow \neg h', \\
h' \leftarrow \neg DL[c \oplus p, b \odot q'; c \cap \neg b](a), \\
q'(a) \leftarrow \neg q(a)
\end{array} \right\}$$

$\pi(\mathcal{K})$ has exactly two strong answer sets, $\{ q'(a), h' \}$ and $\{ q'(a), p(a) \}$. When restricted to the language of \mathcal{K}, they are \emptyset and $\{ p(a) \}$.
Theorem

Let $\mathcal{K} = (O, P)$ be a dl-program. An interpretation $I \subseteq HB_P$ is a strong (resp., weak) answer set of \mathcal{K} if and only if $\pi(\mathcal{K})$ has a strong (resp., weak) answer set I^* such that $I = I^* \cap HB_P$.
Let $\mathcal{K} = (O, P)$ be a dl-program. We define $\tau(\mathcal{K})$ to be the default theory (D, W) as follows:

- W is a first-order theory corresponding to O,
- D consists of (1) for each atom $p(\vec{c}) \in HB_P$, the default
 \[
 \frac{\neg p(\vec{c})}{\neg p(\vec{c})},
 \]
 and (2) for each dl-rule r of the form (1) of P, the default
 \[
 \bigwedge_{1 \leq i \leq m} \tau(B_i) : \neg \tau(B_{m+1}), \ldots, \neg \tau(B_n)
 \]
 where

\[
A
\]
\(\tau(A) \) is defined as

- if \(A \) is an atom \(\tau(A) = A \),
- if \(A \) is a dl-atom of the form (2) then \(\tau(A) \) is the first-order sentence:

\[
\left[\bigwedge_{1 \leq i \leq n} \tau(S_i \ op_i \ p_i) \right] \supset Q(\vec{t}) \quad \text{where}
\]

\[
\tau(S \ op \ p) = \begin{cases}
\bigwedge_{\vec{c} \in \vec{C}} [p(\vec{c}) \supset S(\vec{c})] & \text{if } op = \oplus \\
\bigwedge_{\vec{c} \in \vec{C}} [p(\vec{c}) \supset \neg S(\vec{c})] & \text{if } op = \ominus \\
\bigwedge_{\vec{c} \in \vec{C}} [\neg p(\vec{c}) \supset \neg S(\vec{c})] & \text{if } op = \ominus
\end{cases}
\]

where \(\vec{c} \) is a tuple of constants over \(C \) matching the arity of \(p \) and we identify \(S(\vec{c}) \) with its corresponding first-order sentence.
Example

Consider again $\mathcal{K} = (\emptyset, P)$ where

$$P = \{ p(a) \leftarrow DL[c \oplus p, b \ominus q; c \sqcap \neg b](a) \}$$

$\tau(\mathcal{K}) = (\{d_1, d_2, d_3\}, \emptyset)$ where

$$d_1 = \frac{\neg p(a)}{\neg p(a)}, \quad d_2 = \frac{\neg q(a)}{\neg q(a)},$$

$$d_3 = \frac{(p(a) \supset c(a)) \land (\neg q(a) \supset \neg b(a)) \supset c(a) \land \neg b(a)}{p(a)}.$$

$Th(\{\neg p(a), \neg q(a)\})$ is the unique extension of $\tau(\mathcal{K})$ though we know that \mathcal{K} has two strong answer set \emptyset and $\{p(a)\}$.
Theorem

Let $\mathcal{K} = (O, P)$ be a canonical dl-program and $I \subseteq HB_P$. If O is consistent then I is a strong answer set of \mathcal{K} if and only if $E = Th(O \cup I \cup \neg I)$ is an extension of $\tau(\mathcal{K})$.

Theorem

Let $\mathcal{K} = (O, P)$ be a dl-program where O is consistent. If a theory E is an extension of $\tau(\mathcal{K})$ then $E \cap HB_P$ is a strong answer set of \mathcal{K}.

In the above, we assumed O is consistent. But a dl-program with an inconsistent DL knowledge base may have nontrivial strong answer sets.

Thus, we provide yet another translation to default logic, which preserves strong answer sets for normal dl-programs, even in the case that the given DL knowledge base is inconsistent.
(Eiter et al 2010) proposed a translation to eliminate the constraint operator, for the well-founded semantics. But that translation does not preserve strong answer sets.

(Motik and Rosati 2010) translated a dl-atom without the constraint operator to a first order sentence, and then to an MKNF KB and showed a one-to-one correspondence between strong answer sets of the former and MKNF models of the latter.
We present an approach to translating normal dl-programs to default theories that preserves strong answer sets, by

1. eliminating ⊕ from nonmonotonic dl-atoms, and then
2. translating dl-programs to default theories.

These results have several implications:

1. The first improves a result of (Motik and Rosati 2010)
2. The second translates arbitrary dl-programs to default theories whose extensions correspond to strong answer sets.
3. Default logic is a potential framework for integrating ontologies and rules.
The semantics of dl-programs have been re-defined by minimal models of FLP reduct on HEX programs. That however doesn’t seem to avoid self-supporting loops.

Example

Consider $\mathcal{K} = (\emptyset, \mathcal{P})$ where \mathcal{P} consists of

\[
\begin{align*}
 r(a) &\leftarrow s(a) \\
 s(a) &\leftarrow p(a) \\
 p(a) &\leftarrow DL[S \oplus r, S' \ominus s, S \sqcup \neg S'](a)
\end{align*}
\]

Its only strong answer set is $\{r(a), s(a), p(a)\}$, and it is the FLP answer set of K.