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Abstract

This paper investigates the problem of online prediction learning, where prediction, action,
and learning proceed continuously as the agent interacts with an unknown environment. The
predictions made by the agent are contingent on a particular way of behaving—specifying
what would happen if the agent behaved in a particular way—represented as a value
function. However, the behavior used to select actions and generate the behavior data
might be different from the behavior used to define the predictions, and thus the samples
are generated off-policy. The ability to learn behavior-contingent predictions online and
off-policy has long been advocated as a key capability of predictive-knowledge learning
systems, but has remained an open algorithmic challenge for decades. The fundamental
issue lies with the temporal difference learning update at the heart of most value-function
learning algorithms: combining bootstrapping, off-policy sampling, and fixed-basis function
approximation may cause the value estimate to diverge to infinity (e.g., Q-learning with
linear function approximation). A major breakthrough came with the development of a new
objective function, called the projected Bellman error, that admitted light-weight stochastic
gradient descent variants of temporal difference learning. Since then, many sound online
off-policy prediction algorithms have been developed, but largely for the linear setting. With
this development has come several modifications on the objective itself, and has exposed a
fundamental open question in off-policy value estimation: what objective should we use?
In this work, we first summarize the large body of literature on off-policy learning, (1)
highlighting the similarities in the underlying objectives for algorithms and (2) extracting
the key strategies behind many of the algorithms, that can then be used across objectives.
We then describe a generalized projected Bellman error, that naturally extends to the
nonlinear value estimation setting. We show how this generalized objective unifies previous
work, including previous theory. We use this simplified view to derive easy-to-use, but
sound, algorithms that we show perform well in both prediction and control.
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1. Introduction

To understand the importance of the objective for off-policy value estimation in reinforcement
learning, it is useful to first understand the algorithmic development in off-policy learning
that led to several of these objectives. We first lay out this development, and then describe
the contributions in this work on providing a unified view of the objectives and algorithms,
as well as providing theoretical and empirical insights into the properties of these objectives.

1.1 A Short History of Off-policy Temporal Difference Learning

The story of off-policy learning begins with one of the best-known algorithms of reinforcement
learning, called Q-learning, and the classic exploration-exploitation tradeoff. Off-policy
learning poses an elegant solution to the exploration-exploitation tradeoff: the agent makes
use of an independent exploration policy to select actions while learning the value function
for the optimal policy. The exploration policy does not maximize reward, but instead
selects actions in order to generate data that improves the optimal policy through learning.
Ultimately, the full potential of Q-learning—and this ability to learn about one policy from
a data generated by a totally different exploration—proved limited. Baird’s famous counter-
example (Baird, 1995) provided a clear illustration of how, under function approximation,
the weights learned by Q-learning can become unstable.1 Baird’s counter-example highlights
that divergence can occur when updating off-policy with function approximation and with
bootstrapping (as in temporal difference (TD) learning); even when learning the value
function of a fixed target policy.

The instability of TD methods is caused by how we correct the updates to the value
function to account for the potential mismatch between the target and exploration policies.
Off-policy training involves estimating the expected future rewards (the value function) that
would be observed while selecting actions according to the target policy with training data
(states, actions, and rewards) generated while selecting actions according to an exploration
policy. One approach to account for the differences between the data produced by these
two policies is based on using importance sampling corrections: scaling the update to the
value function based on the agreement between the target and exploration policy at the
current state. If the target and exploration policy would select the same action in a state,
then they completely agree. Alternatively, if they never take the same action in a state
they completely disagree. More generally, there can be degrees of agreement. We call this
approach posterior corrections because the corrections account for the mismatch between
policies ignoring the history of interaction up to the current time step—it does not matter
what the exploration policy has done in the past.

Another approach, called prior corrections, uses the history of agreement between the
exploration and target policy in the update. The likelihood that the trajectory could
have occurred under the target policy is used to scale the update. The most extreme
version of prior corrections uses the trajectory of experience from the beginning of time,
corresponding to what has sometimes been referred to as the alternative life framework.
Prior and posterior corrections can be combined to achieve stable Off-policy TD updates
(Precup et al., 2000), though finite variance of the updates cannot be guaranteed (Precup

1. The action-value star MDP can be found in the errata of Baird’s paper (Baird, 1995).

3



et al., 2001). The perceived variance of these updates, as well as a preference for the
excursions framework discussed below, led to a different direction years later for obtaining
sound off-policy algorithms (Sutton et al., 2009).

Learning about many different policies in parallel has long been a primary motivation
for stable off-policy learning, and this usage suggested that perhaps prior corrections are not
essential. Several approaches require learning many value functions or policies in parallel,
including approaches based on option models (Sutton et al., 1999), predictive representations
of state (Littman and Sutton, 2002; Tanner and Sutton, 2005; Sutton et al., 2011), and
auxiliary tasks (Jaderberg et al., 2016). In a parallel learning setting, it is natural to
estimate the future reward achieved by following each target policy until termination from
the states encountered during training—the value of taking excursions from the behavior
policy. When value functions or policies estimated off-policy will be used, they will be used
starting from states visited by the behavior policy. In such a setting, therefore, it is not
necessarily desirable to obtain alternative life solutions.

The first major breakthrough came with the formalization of this excursion model as
an objective function, which then enabled development of an online stochastic gradient
descent algorithm, called the mean squared projected Bellman error (PBE). The resultant
family of Gradient-TD methods use posterior corrections via importance sampling, and
are guaranteed to be stable under function approximation (Sutton et al., 2009). This new
excursion objective has the same fixed point as TD, and thus Gradient-TD methods converge
to the same solution in the cases for which TD converges. Prior attempts to create an
objective function for off-policy learning, namely the mean squared Bellman error due to
Baird (1995), resulted in algorithms that converge to different and sometimes less desirable
fixed points (see Sutton & Barto, 2018 for an in depth discussion of these issues). The
Gradient-TD methods have extensions for incorporating eligibility traces (Maei, 2011),
non-linear function approximation such as with a neural network (Maei, 2011), and learning
optimal policies (Maei, 2011). Although guaranteed stable, the major critiques of these
methods are (1) the additional complexity due to a second set of learned parameters, and
(2) the variance due to importance sampling corrections.

The second major family of off-policy methods revisits the idea of using prior corrections.
The idea is to incorporate prior corrections, starting only from the beginning of the excursion.
In this way, the values of states that are more often visited under the target policy are
emphasized, but the high variance of full prior corrections—to the beginning of the episode—
is avoided. An incremental algorithm, called Emphatic TD(λ), was developed to estimates
these emphasis weightings (Sutton et al., 2016), with a later extension to further improve
variance of the emphasis weights (Hallak et al., 2016). These Emphatic-TD methods
are guaranteed stable under both on-policy and off-policy sampling with linear function
approximation (Sutton et al., 2016; Yu, 2015; Hallak et al., 2016).

Since the introduction of these methods, several refinements have been introduced, largely
towards improving sample efficiency. These include (1) Hybrid -TD methods that behave
like TD when sampling is on-policy, (2) Saddlepoint methods for facilitating application
of improved stochastic approximation algorithms and (3) variance reduction methods for
posterior corrections, using different eligibility trace parameters. The Hybrid TD methods
can be derived with a simple substitution in the gradient of the excursion objective. The
resultant algorithms perform conventional TD updates when data is generated on-policy
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(Hackman, 2013; White and White, 2016), and are stable under off-policy sampling. Initial
empirical studies suggested that TD achieves better sample efficiency than Gradient-TD
methods when the data is sampled on-policy, though later evaluations found little difference
(White and White, 2016).

Another potential improvement on Gradient-TD can be derived by reformulating the
excursion objective into a saddlepoint problem, resulting in several new methods (Liu et al.,
2016; Dai et al., 2017; Du et al., 2017; Touati et al., 2018; Liu et al., 2020). This saddlepoint
formulation enables use of optimization strategies for saddlepoint problems, including finite
sample analysis (Touati et al., 2018), accelerations (Liu et al., 2020; Du et al., 2017) and even
generalizations to use (approximations to) the mean squared Bellman error (BE) (Dai et al.,
2017; Feng et al., 2019). Though most are applicable to online updating, some acceleration
strategies are restricted to offline batch updating (Du et al., 2017). As with the hybrid
methods, comparative studies to date remain inconclusive about the advantages of these
methods over their vanilla Gradient-TD counterparts (Mahadevan et al., 2014; White and
White, 2016).

Finally, several algorithms have been proposed to mitigate variance from importance
sampling ratios in the posterior corrections. High magnitude importance sampling corrections
introduce variance and slow learning, dramatically reducing the benefits of off-policy learning.
In parallel learning frameworks with many target policies, the likelihood of large importance
sampling corrections increases as the number of target policies increases. In practice
one might use small stepsizes, or avoid eligibility traces to mitigate the variance. The
Retrace algorithm solves this issue by truncating the importance sampling ratio and a bias
correction, thus avoiding large updates when the exploration and the target policy differ
significantly. This approach can diverge with function approximation (Touati et al., 2018).
Nevertheless, Retrace has been used in several deep-learning systems with non-linear function
approximation (Munos et al., 2016; Wang et al., 2016). The Tree Backup algorithm (Precup
et al., 2000) mitigates variance without importance sampling corrections by only using the
probability of the selected action under the target policy. Both Retrace and Tree Backup can
be viewed as adapting the eligibility trace to reduce variance (see Section ??). The related
ABQ algorithm achieves stable off-policy updates without importance sampling corrections
by varying the amount of bootstrapping in an action-dependent manner (Mahmood et al.,
2017). These developments are complementary to the GTD and ETD approaches, as the
focus is variance and they still require gradient methods or reweighting to be sound.

1.2 The Role of the Objective

Nestled within the development of these algorithms is an important choice: the weighting on
states in the objective. The importance of the weighting on states has been well-recognized
for many years, and is in fact the reason TD diverges on Baird’s counterexample: the
weighting on states using the stationary distribution of the behavior policy, rather than the
target policy, results in an iterative update that is no longer a contraction. The emphatic
algorithms were introduced to adjust this weighting to ensure convergence.

This reweighting, however, is not only about convergence; it also changes the fixed point
and the quality of the solution. There has been some work investigating the impact of the
state weighting on the optimal solution, not just on the behavior of the updates themselves.
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The most stark result is a simple example where using the solution to the PBE can result in
an arbitrarily poor mean squared value error (VE), under certain state weightings (Kolter,
2011). Several later results extended on-policy bounds on the VE, to the off-policy setting,
showing that VE could be bounded in the off-policy setting using careful choices on the
state weighting—namely using state weightings given by Emphatic TD (Hallak et al., 2016;
White, 2017). Despite these insights, the role of the weighting on the quality of the solution
in practice remains open. A natural question is how to choose the state weighting in the
objective, and how much it matters.

Another important question is the form of the objective itself, and the long-open question
about using the BE or the PBE. Using the BE avoids the poor counterexamples that exist
for the PBE (Scherrer, 2010), but nonetheless in some cases the PBE produces a better
solution (Scherrer, 2010; Sutton and Barto, 2018). Further, the BE has been shown to have
an identifiability problem (Sutton and Barto, 2018). Though the evidence comparing the
BE and PBE is inconclusive, the PBE has been the default choice because we have many
algorithms to optimize it. The BE, on the other hand, is typically avoided due to the double
sampling problem, where it is unclear how to obtain an unbiased sample of the gradient
without a simulator.

Recently, however, this technical challenge has been overcome with the introduction of
a saddlepoint form for the BE (Dai et al., 2017). The resulting algorithms are similar to
the saddlepoint algorithms for the linear PBE: a second estimator is used to estimate a
part of the gradient. The BE is particularly alluring, as it equally applies to the linear and
nonlinear value estimation settings. The PBE, on the other hand, was defined for the linear
setting, due to the difficulty in computing the projection operator for the nonlinear setting.
The one work attempting to extend it to the nonlinear setting used a local linear projection
that results in the need to compute gradients through gradients, and so a more complex
algorithm (Maei et al., 2009). These potential advantages, as well as a viable strategy for
optimizing the BE, motivates the utility of answering which of these objectives might be
preferable.

1.3 Contributions

In this work, we bring clarity to the question: what objective should we use for off-policy
value estimation? We first summarize many existing off-policy algorithms, as optimizing
the linear PBE in different ways and in some cases with different state weightings. This
summary separates the optimization strategy from the definition of the objective, allowing
us to move away from specifically which algorithm is to understanding the differences in
fixed points obtained under the different objectives. We then propose a generalized PBE,
that uses a generalized projection operator that both extends the PBE to the nonlinear
setting and unifies the BE and linear PBE under one objective. Using these insights, we
provide the following contributions.

1. We show how this helps resolve the non-identifiability of the BE, where a particular
projection in the generalized PBE provides an Identifiable BE.

2. We highlight the role of the state weighting in this generalized objective, both extending
theoretical results bounding the the VE and empirically showing that the emphatic
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weighting can significantly improve the quality of the solution. We show this for three
variants of the generalized PBE: the BE (no projection), the linear PBE (projection
space equal to the value function space) and a generalized PBE in-between (projection
space larger than the value function space).

3. We show that these insights also extend to control, by defining an objective for learning
action values with (soft) maximal operators. We use this objective to derive a sound
gradient variant of Q-learning.

4. We exploit the connection to the linear PBE, to develop a more effective algorithm for
the generalized PBE based on using gradient-corrections rather than the saddlepoint
update.

5. Finally, we demonstrate the utility of these prediction and control algorithms in several
small benchmark problems.

2. Problem Definition and Background

We consider the problem of learning the value function for a given policy under the Markov
Decision Process (MDP) formalism. The agent interacts with the environment over a
sequence of discrete time steps, t = 1, 2, 3, . . .. On each time step the agent observes a partial
summary of the state St ∈ S and selects an action At ∈ A. In response, the environment
transitions to a new state St+1, according to transition function P (St+1|St, At), and emits
a scalar reward Rt+1 ∈ R. The agent selects actions according to a stochastic, stationary
target policy π : S ×A → [0, 1].

We study the problem of policy evaluation: the computation or estimation of the
expected discounted sum of future rewards for policy π from every state. The return at
time t, denoted Gt ∈ R, is defined as the discounted sum of future rewards. The discount
factor can be variable, dependent on the entire transition: γ : S × A × S → [0, 1], with

γt+1
def
= γ(St, At, St+1). The return is defined as

Gt
def
= Rt+1 + γt+1Rt+2 + γt+1γt+2Rt+3 + γt+1γt+2γt+3Rt+4 + . . .

= Rt+1 + γt+1Gt+1.

When γt is constant, we get the familiar return Gt = Rt+1 + γRt+2 + γ2Rt+3 + ..., where we
overload γ here to indicate a scalar, constant discount. Otherwise, variable γt can discount
per transition, including encoding termination when it is set to zero. This generalization
ensures we can discuss episodic problems without introducing absorbing states (White, 2017).
It also enables the derivations and theory to apply to both the continuing and episodic
settings. The value function v : S → R maps each state to the expected return under policy
π starting from that state

vπ(s)
def
= Eπ[Gt | St = s] , for all s ∈ S (1)

where the expectation operator Eπ[·] reflects that the distribution over future actions is given
by π, to distinguish from a potentially different behavior policy. The distribution over future
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states and rewards is always given by the transition dynamics of the MDP, and so is not
explicitly listed as a subscript.

In this paper, we are interested in problems where the value of each state cannot be stored
in a table; instead the agent must approximate the value with a parameterized function.
The approximate value function v̂(st,w) can have arbitrary form, as long as it is everywhere
differentiable with respect to the weights w ∈ Rd. Typically the number of components in w
is much less than the number of possible states (d� |S|), and thus v̂ will generalize values
across many states in S. An important special case is when the approximate value function
is linear in the parameters and in features of the state. In particular, the current state St is
converted into feature vector xt ∈ Rd by some fixed mapping x : S → Rd. The value of the
state can then be approximated with an inner product:

v̂(st,w) = w>xt ≈ vπ(st), for all st ∈ S.

Another typical parameterization for v̂(st,w) is a neural network, where w consists of all
the weights in the network. Henceforth, we refer to w exclusively as the weights, or weight
vector, and reserve the word parameter for variables like the discount-rate and stepsize
parameters.

We first describe how to learn this value function for the on-policy setting, where the
behavior policy equals the target policy. Temporal difference learning (Sutton, 1988) is
perhaps the best known and most successful approach for estimating v̂ directly from samples
generated while interacting with the environment. Instead of waiting until the end of a
trajectory to update the value of each state, the TD(λ) algorithm adjusts its current estimate
of the weights toward the difference between the discounted estimate of the value in the
next state and the estimated value of the current state plus the reward along the way:

δt
def
= δ(St, At, St+1)

def
= Rt+1 + γv̂(St+1,w)− v̂(St,w). (2)

We use the value function’s own estimate of future reward as a placeholder for the future
rewards defining Gt that are not available on time-step t + 1. In addition, the TD(λ)
algorithm also maintains an eligibility trace vector zt ∈ Rd that stores a fading trace of
recent feature activations. The components of wt are updated on each step proportional to
the magnitude of the trace vector. This simple scheme allows update information to more
quickly propagate in domains when the rewards are often zero, such as a maze with a reward
of one upon entering the terminal state and zero otherwise.

The update equations for TD(λ) are straightforward:

wt+1 ← wt + αδtzt

zt ← γλzt−1 +∇v̂(St,w),

where α ∈ R is the scalar stepsize parameter that controls the speed of learning, and λ ∈ R
controls the length of the eligibility trace. If λ is one, then the above algorithm performs
an incremental version of Monte-Carlo policy evaluation. On the other-hand, when λ is
zero the TD(λ) algorithm updates the value of each state using only the reward and the
estimated value of the next state—often referred to as full one-step bootstrapping. TD(0) is
arguably the most common implementation, especially with neural networks, with update

wt+1 ← wt + αδt∇v̂(St,w)
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Under linear function approximation, intermediate values of λ between zero and one often
perform best. The TD(λ) algorithm has been shown to converge with probability one to
the best linear approximation of the value function under quite general conditions, for the
on-policy setting.

TD(λ) is only sound for the linear function approximation setting. The updates for
the linear setting use ∇v̂(St,w) = xt, in either the eligibility trace or the TD(0) update.
Nonetheless, TD is often used outside the linear setting, and often obtains good perfor-
mance. Therefore, we consider this more general form for TD(λ), under nonlinear function
approximation.

These updates need to be modified for the off-policy case, where the agent selects actions
according to a behavior policy b : S ×A → [0, 1] that is different from the target policy. The
value function for target policy π is updated using experience generated from a behavior
policy that is off, away, or distant from the target policy. For example, consider the most
well-known off-policy algorithm, Q-learning. The target policy might be the one that
maximizes future discounted reward, while the behavior is nearly identical to the target
policy, but instead selects an exploratory action with some small probability. More generally,
the target and behavior policies need not be so closely coupled. The target policy might
be the shortest path to one or more goal states in a gridworld, and the behavior policy
might select actions in each state uniform randomly. The main requirement linking these
two policies is that the behavior policy covers the actions selected by the target policy in
each state visited by b, that is: b(a|s) > 0 for all states and actions in which π(a|s) > 0.

An important difference between these two settings is in the stability and convergence
of the algorithms. One of the most distinctive aspects of off-policy learning and function
approximation is that it has been shown that Q-learning and TD(λ), appropriately modified
for off-policy updates, and even Dynamic Programming can diverge (Sutton and Barto,
2018). In the next two sections, we will discuss different ways to adapt TD-style algorithms
to the off-policy setting. We will highlight convergence issues and issues with solution quality,
and discuss different ways recent algorithms proposed to address these issues.

3. Off-policy Corrections and the Connection to State Weightings

The key problem in off-policy learning is to estimate the value function for the target policy,
conditioned on samples produced by actions selected according to the behavior policy. This
is an instance of the problem of estimating an expected value under some target distribution
from samples generated by some other behavior distribution. In statistics, we address this
problem with importance sampling, and indeed most methods of off-policy reinforcement
learning use such corrections.

We can account for the differences between which actions the target policy would choose
in each state, and we can account for which states are more likely to be visited under the
target policy. More precisely, there are two distributions that we could consider correcting:
the distribution over actions, given the state, and the distribution over states. When
observing a transition (S,A, S′, R) generated by taking the action according to b(·|S), we
can correct the update for that transition so that in expectation it is as if actions were
taken according to π(·|S). However, these updates are still different than if we evaluated π
on-policy, because the frequency of visiting state S under b will be different than under π.

9



x y Ta1 a1
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Figure 1: A simple MDP to understand the differences between prior corrections and
posterior corrections in Off-policy TD algorithms with importance sampling.

All methods correct for the distribution over actions (posterior corrections), given the state,
but several methods correct for the distribution over states (prior corrections) in slightly
different ways.

In this section, we first provide an intuitive explanation of the differences between
methods that use only posterior correction and those that additionally incorporate prior
corrections. We then discuss the optimization objective used by Off-policy TD methods, and
highlight how the use of prior corrections corresponds to different weightings in this objective.
We discuss the importance of this weighting in the following section. This generic objective
will also allow us to easily describe the differences between key off-policy algorithms. We
focus first on the linear PBE, and extend insights in the next section.

3.1 Posterior Corrections

The most common approach to developing sound Off-policy TD algorithms makes use of
posterior corrections based on importance sampling. One of the simplest examples of this
approach is Off-policy TD(λ). The procedure is easy to implement and requires constant
computation per time step, given knowledge of both the target and behavior policies. On
the transition from St to St+1 via action At, we compute the ratio between π and b:

ρt
def
= ρ(At|St)

def
=
π(At|St)
b(At|St)

. (3)

These importance sampling corrections are then simply added to the eligibility trace update
on each time step:

wt+1 ← wt + αδtz
ρ
t

zρt ← ρt(γλz
ρ
t−1 + xt), (4)

where δt is defined in Equation 2. This way of correcting the sample updates ensures that
the approximate value function v̂ estimates the expected value of the return as if the actions
were selected according to π. Posterior correction methods use the target policy probabilities
for the selected action to correct the update to the value of state St using only the data from
time step t onward. Values of π from time steps prior to t have no impact on the correction.
Combining importance sampling with eligibility trace updates, as in Off-policy TD(λ), is
the most common realization of posterior corrections.

To help understand the implications of posterior corrections, consider the MDP depicted
in Figure 1. Each episode starts in the leftmost state denoted ‘x’ and terminates on transition
into the terminal state denoted with ‘T’, and each state is represented with a unique tabular
state encoding: x: [1, 0], y: [0, 1]. In each state there are two possible actions and the
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behavior policy chooses each action in each state with 0.5 probability. The target policy
chooses action a1 in all states. A posterior correction method like Off-policy TD(λ), will
always update the value of a state if action a1 is taken. For example if the agent experiences
the transition y → T , Off-policy TD(λ) will update the value of state y; no matter the
history of interaction before entering state y.

Although the importance sampling corrections product in the eligibility trace update, Off-
policy TD(λ) does not use importance sampling corrections computed from prior time-steps
to update the value of the current state. This is easy to see with an example. For simplicity
we assume γt is a constant γ ∈ [0, 1). Let’s examine the updates and trace contents for a
trajectory where b’s action choices perfectly agree with π:

x→ y → T.

After the transition from x → y, Off-policy TD(λ) will update the value estimate corre-
sponding to x: [

v̂1(x)
v̂1(y)

]
←
[
0
0

]
+ αδ1z

ρ
1 = αδ1

[
π(a1|x)
b(a1|x) γλ

0

]
,

where v̂1(x) denotes the estimated value of state x on time step t = 1 (after the first
transition), and as usual zρ0 and v̂ are initialized to zero. After the second transition, y → T ,
the importance sampling corrections will product in the trace, and the value estimates
corresponding to both x and y are updated:[

v̂2(x)
v̂2(y)

]
←
[
v̂1(x)
v̂1(y)

]
+ αδ2

[
π(a1|y)
b(a1|y)

π(a1|x)
b(a1|x) γ

2λ2

π(a1|y)
b(a1|y) γλ

]
.

The estimated value of state y is only updated with importance sampling corrections
computed from state transitions that occur after the visit to y: using π(a1|y)

b(a1|y) , but not π(a1|x)
b(a1|x) .

Finally, consider another trajectory that deviates from the target policy’s choice on the
second step of the trajectory:

x→ y → y → T.

On the first transition the value of x is updated as expected, and no update occurs as a
result of the second transition. On the third, transition the estimated value of state x is not
updated; which is easy to see from inspecting the eligibility trace on each time-step:

zρ1 =

[
π(a1|x)
b(a1|x) γλ

0

]
; zρ2 = 0; zρ3 =

[
0

π(a1|y)
b(a1|y) γλ

]
.

The eligibility trace is set to zero on time step two, because the target policy never chooses
action a2 in state y and thus π(a2|y)

b(a2|y) = 0. The value of state St is never updated using
importance sampling corrections computed on time steps prior to t.

Many modern off-policy prediction methods use some form of posterior corrections
including the Gradient-TD methods, Tree Backup(λ), V-trace(λ), and Emphatic TD(λ).
In fact, all off-policy prediction methods with stability guarantees make use of posterior
corrections via importance sampling. Only correcting the action distribution, however, does
not necessarily provide stable updates, and Off-policy TD(λ) is not guaranteed to converge
(Baird, 1995). To obtain stable Off-policy TD(λ) updates, we need to consider corrections
to the state distribution as well, as we discuss next.
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3.2 Prior Corrections

We can also consider correcting for the differences between the target and behavior policy
by using the agreement between the two over a trajectory of experience. Prior correction
methods keep track of the product of either

∏t
k=1 π(Ak|Sk) or

∏t
k=1

π(Ak|Sk)
b(Ak|Sk) , and correct

the update to the value of St using the current value of the product. Therefore, the value
of St is only updated if the product is not zero, meaning that the behavior policy never
selected an action for which π(Ak|Sk) was zero—the behavior never completely deviated
from the target policy.

To appreciate the consequences of incorporating these prior corrections into the TD
update consider a state-value variant of Precup et al. (2000) Off-policy TD(λ) algorithm:

wt+1 ← wt + αδtz
ρ
t

zρt ← ρt

(
γλzt−1 +

t−1∏
k=1

ρkxt

)
(5)

where zρ0 = 0. We will refer to the above algorithm as Alternative-life TD(λ). The product
in Equation 5 includes all the ρt observed during the current episode. Note that experience
from prior episodes does not impact the computation of the eligibility trace, as the trace is
always reinitialized at the start of the episode.

Now consider the updates performed by Alternative-life TD(λ) using different trajectories
from our simple MDP (Figure 1). If the agent ever selects action a2, then none of the
following transitions will result in further updates to the value function. For example, the
trajectory x → y → y → y · · · y → T will update v̂(s) corresponding to the first x → y
transition, but v̂(y) would never be updated due to the product in Equation 5. In contrast,
the Off-policy TD(λ) algorithm described in Equation 4 would update v̂(s) on the first
transition, and also update v̂(y) on the last transition of the trajectory.

The Alternative-life TD(λ) algorithm has been shown to converge under linear function
approximation, but in practice exhibits unacceptable variance (Precup et al., 2001). The
Emphatic TD(λ) algorithm, on the other hand, provides an alternative form for the prior
corrections, that is lower variance but still guarantees convergence. To more clearly explain
why, next we will discuss how different prior corrections account for different weightings in
optimizing the mean squared Projected Bellman Error (PBE).

3.3 The Linear PBE under Posterior and Prior Corrections

In this section, we describe how different prior corrections, or no prior corrections, correspond
to optimizing similar objectives, but with different weightings over the state. This section
introduces the notation required to explain the many algorithms that optimize the linear
PBE, and clarifies convergence properties of algorithms, including which algorithms converge
and to which fixed point. We start with only the linear PBE, because most algorithms have
been designed to optimize it and it is worthwhile understanding this special case. In the
next section, we extend beyond the linear setting, to discuss the generalized PBE.

12



We begin by considering a simplified setting, with λ = 0, and a simplified variant of the
linear PBE, called the NEU (norm of the expected TD update (Sutton et al., 2009))

NEU(w) =
∥∥∥∑
s∈S

d(s)Eπ
[
δ(S,A, S′)x(S) | S = s

] ∥∥∥2

2
, (6)

where d : S → [0,∞) is a positive weighting on the states, and we explicitly write δ(S,A, S′)
to emphasize that randomness in the TD-error is due to the underlying randomness in the
transition (S,A, S′). Equation 6 does not commit to a particular sampling strategy. If the
data is sampled on-policy, then d = dπ, where dπ : S → [0, 1] is the stationary distribution
for π which represents the state visitation frequency under behavior π in the MDP. If the
data is sampled off-policy, then the objective is instead weighted by the state visitation
frequency under b, i.e., d = db.

We first consider how to sample the NEU for a given a state. The behavior selects actions
in each state s, so the update δtxt needs to be corrected for the action selection probabilities
of π in state s. Importance sampling is one way to correct these action probabilities from a
given state St = s

Eπ[δ(St, At, St+1)x(St) | St = s] =
∑
a∈A

π(a|s)
∑
s′∈S

P (s′|s, a)δ(s, a, s′)x(s)

=
∑
a∈A

b(a|s)
b(a|s)

π(a|s)
∑
s′∈S

P (s′|s, a)δ(s, a, s′)x(s)

=
∑
a∈A

b(a|s)
∑
s′∈S

P (s′|s, a)
π(a|s)
b(a|s)

δ(s, a, s′)x(s)

= Eb[ρ(At|St)δ(St, At, St+1)x(St) | St = s] . (7)

Therefore, the update ρtδtxt provides an unbiased sample of the desired expected update
Eπ[δ(St, At, St+1)x(St) | St = s]. All off-policy methods use these posterior corrections.

We can also adjust the state probabilities from db to dπ, using prior corrections.
Alternative-life TD(λ) uses such prior corrections to ask: what would the value be if
the data had been generated according to π instead of b. In such a scenario, the state
visitation would be according to dπ, and so we need to correct both action probabilities
in the updates as well as the distribution from which we update. Prior corrections adjust
the likelihood of reaching a state. Consider the expectation using prior corrections, when
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starting in state s0 and taking two steps following b:

Eb[ρ0ρ1Eπ[δ(St, At, St+1)x(St) | St = S2] | S0 = s0]

= Eb

ρ0

∑
a1∈A

b(a1|S1)
∑
s2∈S

P (s2|S1, a1)ρ(a1|S1)Eπ[δ(St, At, St+1)x(St) | St = s2] | S0 = s0


= Eb

ρ0

∑
a1∈A

π(a1|S1)P (s1|S1, a1)Eπ[δ(St, At, St+1)x(St) | St = s2] | S0 = s0


= Eb[ρ0Eπ[δ(St, At, St+1)x(St) | St−1 = S1] | S0 = s0]

=
∑
a0∈A

π(s0, a0)
∑
s1∈S

P (s1|s0, a0)Eπ[δ(St, At, St+1)x(St) | St−1 = s1]

= Eπ[δ(St, At, St+1)x(St) | S0 = s0] .

More generally, we get

Eb
[
ρ1 . . . ρt−1Eπ[δ(St, At, St+1)x(St) | St = s] |S0 = s0

]
= Eπ[δ(St, At, St+1)x(St) | S0 = s0] .

These corrections adjust the probabilities of the sequence from the beginning of the episode
to make it as if policy π had taken actions A1, . . . , At−1 to get to state St, from which we
do the TD(λ) update.

A natural question is which objective should be preferred: the alternative-life (d ∝ dπ) or
the excursions objective (d ∝ db). As with all choices for objectives, there is not an obvious
answer. The alternative-life objective is difficult to optimize, because prior corrections can
become very large or zero—causing data to be discarded—and is high variance. On the other
hand, the fixed-point solution to the excursion objective can be arbitrarily poor compared
with the best value function in the function approximation class if there is a significant
mismatch between the behavior and target policy (Kolter, 2011). Better solution accuracy
can be achieved using an excursion’s weighting that includes db, but additionally reweights
to make the states distribution closer to dπ, as is done with Emphatic TD(λ). We discuss
this alternative weighting in the next section.

The above discussion focused on a simplified variant of the PBE with λ = 0, but the
intuition is the same for the PBE and λ > 0. To simplify notation we introduce a conditional
expectation operator:

Ed[Y ] =
∑
s∈S

d(s)Eπ[Y | S = s].

We can now define

C
def
= Ed[x(S)x(S)>]

A
def
= −Ed[(γ(S′)x(S′)− x(S))z(S)>]

b
def
= Ed[R(S,A, S′)z(S)>]

where the expected eligibility trace z(S) ∈ Rk is defined recursively z(S)
def
= x(S) +

γ(S)λEπ[z(St−1)|St = S]. We can write the TD(λ) fixed point residual as:

Ed[δ(S,A, S′)z(S)] = −Aw + b (8)
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so called because Edπ [δ(S,A, S′)z(S)] = 0 at the fixed point solution for on-policy TD(λ).
The linear PBE can be defined simply, given the definition above:

linear PBE(w)
def
= (−Aw + b)>C−1(−Aw + b). (9)

The only difference compared with the NEU is the weighted `2 norm, weighted by C−1,
instead of simply ‖−Aw + b‖22. The extension to λ > 0 requires that posterior corrections
also correct future actions from the state S, resulting in a product of importance sampling
ratios in the eligibility trace, as described in the previous section. The conclusions about
the choice of state probabilities d in defining the objective, however, remain consistent.

3.4 Emphatic Weightings as Prior Corrections

Emphatic Temporal Difference learning, ETD(λ), provides an alternative strategy for
obtaining stability under off-policy sampling without computing gradients of the linear PBE.
The key idea is to incorporate some prior corrections so that the weighting d results in a
positive definite matrix A. Given such an A, a TD(λ) algorithm—a semi-gradient algorithm—
can be shown to converge. Importantly, this allows for a stable off-policy algorithm with
only a single set of weights. Gradient-TD methods, on the other hand, use two stepsize
parameters and two weight vectors to achieve stability.

ETD(λ) minimizes a variant of the linear PBE defined in Equation 9, where the weighting
d is defined based on the followon weighting. The followon reflects (discounted) state
visitation under the target policy when doing excursions from the behavior: starting from
states sampled according to db. The followon is defined as

f(st)
def
= db(st) + γ(st)

∑
st−1,at−1

db(st−1)π(at−1|st−1)P (st|st−1, at−1) + . . . . (10)

The emphatic weighting then corresponds to m(st) = db(st)λ + (1 − λ)f(st). This is the
weighting used in the linear PBE in Equation 9, setting d(s) = m(s).

The Emphatic TD(λ) algorithm is specified by the following equations:

Ft ← ρt−1γtFt−1 + 1

Mt ←λt + (1− λt)Ft
zρt ← ρt

(
γtλz

ρ
t−1 +Mtxt

)
wt+1 ← wt + αδtz

ρ
t ,

with F0 = 1 and zρ0 = 0. The scalar estimate Ft is used to include the weighting
defined in Equation 43. To gain some intuition for this weighting, consider a setting
where γt = γ is constant and λ = 0. Then Mt = Ft =

∑t
j=0 γ

j
∏j
i=1 ρt−i, giving trace

zρt ← ρt

(
γtλz

ρ
t−1 +

∑t
j=0 γ

j
∏j
i=1 ρt−ixt

)
.

There are some similarities to the weighting in the Alternative-life TD(λ) trace in
Equation 5, where zρt ← ρt

(
γtλz

ρ
t−1 +

∏t
i=1 ρixt

)
. Both adjust the weighting on xt to

correct for—or adjust—the state distributions. Alternative-Life TD more aggressively
downweights states that would not have been visited under the target policy. ETD, on the
other hand, reweights based on how frequently the states would be seen when starting π as
an excursion from b.
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Emphatic TD(λ) has strong convergence guarantees in the case of linear function
approximation. The ETD(λ) under off-policy training has been shown to converge in
expectation using the same expected update analysis used to show that TD(λ) converges
under on-policy training. Later, Yu (2015) extended this result to show that ETD(λ)
converges with probability one. Perhaps more practically relevant, this weighting also
resolves the issues raised by Kolter’s example (Kolter, 2011). Kolter’s example demonstrated
that for a particular choice of π and b, the solution to the linear PBE could result in
arbitrarily bad error compared with the best possible approximation in the function class.
In other words, even if the true value function can be well approximated by the function
class, the off-policy fixed point from the linear PBE with weighting d = db can result in an
arbitrarily poor approximation to the values. In Section 6, we explain that the fixed points
of the linear PBE with the emphatic weighting, on the other hand, do not suffer from this
problem, expanding on insights from (Hallak et al., 2016, Corollary 1) and (White, 2017,
Theorem 1).

3.5 Broadening the Scope of Weightings

The choice of d is generic and we can consider many different weightings. The weightings dπ
and db were implicitly chosen because they correspond to the data gathering policies. The
emphatic weighting m is feasible to compute online, and resolves divergence issues. Other
weightings might not be as feasible to compute, but there is a clear opportunity to broaden
the scope of weightings further.

To determine which weightings to consider, we need to understand the role of the
weighting. There are actually two possible roles. The first is to specify states of interest:
determine the relative importance of a state for the accuracy of our value estimates compared
to the true values. This corresponds to a weighting in the value error. The second is the
choice of weighting in our objective, such as the linear PBE, which is a surrogate for the
value error.

For the first question, we need to determine the relative importance of states. It is
difficult to propose a one-size-fits-all answer to this question, as it is highly goal dependent.
For example, if the policy is being evaluated for deployment in an episodic problem, a
common choice is putting all weight on the set of start states (?). The value in the start
states reflects the expected return the agent will receive in each episode, and is sufficient for
evaluating its utility for deployment. Alternatively, if many value functions are learned for
predictive systems, such as those composed of GVFs (Jaderberg et al., 2016; ?), it is likely
better to ensure every state has a non-zero weighting so that predictions are not nonsensical
from those states. It is also possible that value from some states might be queried much
more often, or the states might correspond to important catastrophic event from which it is
highly important to have accurate predictions to facilitate good decision-making.

Overall, the choice of d is subjective. Rather, we simply need to ensure that we are making
the choice of d in a deliberate way in our evaluation objective so that solution performance
is appropriately measured. Once we make this choice for our evaluation objective, we can
ask the second question: which optimization objectives, with what weightings, are most
effective for minimizing the evaluation objective? It is not obvious that, for example, the
minimum of the PBE with weighting d provides the best solution to the VE with weighting
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Objective function weight d includes

dπ db
Posterior
corrections N/A. Alternative

life algorithms can-
not only do posterior
corrections.

Off-Policy TD(λ)

GTD(λ) (Sutton et al., 2010),

Hybrid TD(λ) (Maei, 2011; White & White, 2016)

Action-dependent bootstrapping, including Tree
Backup(λ) (Precup et al., 2000), V-trace(λ) (Espe-
holt et al., 2018), AB-Trace(λ) (Mahmood, Yu &
Sutton, 2017)

Saddlepoint methods for GTD2(λ), including
GTD2-MP(λ) (Liu et al., 2015), SVRG and SAGA
for policy evaluation (Du et al., 2017) and Gradient
Tree Backup(λ) (Touati et al., 2018)

Prior +
Posterior
corrections

Alternative-life
TD(λ)

Alternative-life
GTD(λ), HTD(λ),
and Saddlepoint
methods

ETD(λ) (Sutton, Mahmood & White, 2016)

ETD(λ, β) (Hallak et al., 2015)

Emphatic GTD(λ), HTD(λ), and Saddlepoint
methods

Table 1: A summary of off-policy value estimation methods for the linear PBE, based on
weightings in the objective and whether they incorporate both prior and posterior corrections.
The algorithms in grey are hypothetical algorithms that can easily be derived by applying
the same derivations as in their original works, but with alternative weightings.

d; potentially the PBE with a different weighting is better. In fact, we know that the linear
PBE with d = db suffers from a counterexample (Kolter, 2011), whereas using the emphatic
weighting in the linear PBE provides an upper bound on the VE under weighting db. We
discuss the potential utility of using a different weighting for the objective, than the desired
weighting in the VE, in Section 6.

3.6 Summary of Algorithms for the Linear PBE

We conclude this section by summarizing the current algorithms by the objective they
optimize. This two axes are whether prior or posterior corrections are used, and whether the
weighting includes dπ or db. The emphatic weighting adjusts the state weighting with prior
corrections, but still includes db as part of the weighting in the objective. Alternative-life,
on the other hand, removes db all together.

The primary differences between the algorithms is in how they optimize their respective
objectives. They can use gradient updates or hybrid updates, and can incorporate other
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additions like action-dependent bootstrapping. For example, we can easily obtain a gradient
version of ETD, by incorporating emphatic weights into the GTD algorithm. The GTD(λ)
algorithm is

zρt ← ρt
(
γtλz

ρ
t−1 + xt

)
ht+1 ← ht + αh

[
δtz

ρ
t − (h

>
t x)xt

]
wt+1 ← wt + αδtz

ρ
t − αγt+1(1− λ)(h

>
t z

ρ
t )xt+1︸ ︷︷ ︸

correction term

The Emphatic GTD(λ) algorithm uses the same updates to the two sets of weights, but with
emphatic weights in the trace: zρt ← ρt

(
γtλz

ρ
t−1 +Mtxt

)
. More simply, when considering

Emphatic GTD(0), we get

Ft ← ρt−1γtFt−1 + 1

ht+1 ← ht + αhρtFt
[
δt − (h

>
t x)
]
xt

wt+1 ← wt + αρtFt[δtxt − γt+1(1− λ)(h
>
t xt)xt+1]

where Ft is omitted for standard GTD(0).

Many of the algorithms can incorporate different weightings, by premultiplying the
update, but might use different approaches to approximate the gradient. It is important
to separate the weighting and algorithmic approach, as otherwise, comparisons between
algorithms (e.g., ETD and GTD) could reflect either the difference in objective (weighting
by m or db) or in the algorithmic approach (TD-style updates or gradient updates). The
algorithms, categorized according to weightings, are summarized in Table 1. We include
more descriptions about these algorithms in Appendix B.

4. Broadening the Scope of Objectives

The previous section primarily focused on the linear PBE and on weightings. This orga-
nization was to provide an intuitive introduction to the importance of weightings, on the
most commonly used objective in off-policy prediction. In this section, we discuss how to
generalize the linear PBE, to obtain the generalized PBE, that unifies the BE and linear
PBE under one objective.

4.1 An Overview of Existing Objectives

Let us start by discussing the standard evaluation objective used for policy evaluation: the
mean squared value error (VE):

VE(w)
def
=
∑
s∈S

d(s)(v̂(s,w)− vπ(s))2. (11)

This objective cannot be directly optimized, because it requires access to the true value
function vπ(s). In experiments, however, it is a common objective for evaluation. The
approximation v̂(s,w) is penalized more heavily for inaccurate value estimates in highly
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weighted states s. One way to indirectly optimize the VE is to use the mean squared return
error (RE):

RE(w)
def
=
∑
s∈S

d(s)Eπ
[
(v̂(s,w)−G)2 | S = s

]
. (12)

The minima of the RE(w) are equivalent to the minima of VE(w), which can be seen by
looking at the gradients of the RE:

∇RE(w) =
∑
s∈S

d(s)Eπ
[
∇ (v̂(s,w)−G)2 | S = s

]
=
∑
s∈S

d(s)Eπ[(v̂(s,w)−G)∇v̂(s,w) | S = s]

=
∑
s∈S

d(s) (v̂(s,w)− Eπ[G | S = s])∇v̂(s,w)

=
∑
s∈S

d(s) (v̂(s,w)− vπ(s))∇v̂(s,w) = ∇VE(w).

In practice, the RE is rarely used, because it requires obtaining samples of entire returns.
Instead, bootstrapping is used and so forms of the Bellman error are used, as in the BE
and PBE. The BE reflects the goal of approximating the fixed-point formula given by the
Bellman operator T , defined as

T v̂(·,w)(s)
def
= Eπ

[
R+ γv̂(S′,w) | S = s

]
for all s. (13)

When equality is not possible, the difference is minimized as in the BE

BE(w)
def
=
∑
s∈S

d(s) (T v̂(·,w)(s)− v̂(s,w))2 (14)

=
∑
s∈S

d(s)
(
Eπ
[
R+ γv̂(S′,w) | S = s

]
− v̂(s,w)

)2
.

There has been much discussion, formal and informal, about the utility of using the
BE versus the PBE (Scherrer, 2010). The BE can be decomposed into the PBE and a
projection penalty term (Scherrer, 2010). To understand why, recall the definition of a
projection operator. For a given vector space F , the projection of a vector v onto this space
is the closest point under a given (weighted) norm ‖ · ‖d: minu∈F ‖u− v‖d. This definition
also applies to function spaces. Let ΠF ,d be the weighted projection on the space of value
functions, defined as

ΠF ,du
def
= arg min

u∈F
‖u− v‖d (15)

For a given vector v ∈ R|S|, composed of value estimates for each state, we get

‖v − T v‖2D = ‖v −ΠF ,dT v‖2d︸ ︷︷ ︸
PBE

+ ‖T V −ΠF ,dT v‖2d︸ ︷︷ ︸
Projection Penalty

(16)

This penalty causes the BE to prefer value estimates for which the projection does not have a
large impact near the solution. The PBE can find a fixed point where applying the Bellman
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operator T v moves far outside the space of representable functions, as long as the projection
back into the space stays at V . The projection penalty is sensible, and in fact prevents some
of the counterexamples on the solution quality for the PBE discussed in Section 6.

Despite the potential utility of the BE, it has not been widely used due to difficulties in
optimizing this objective without a model. The BE is difficult to optimize because of the
well-known double sampling problem for the gradient. To see why, consider the gradient of
the BE, where we use the fact that Eπ[δ | S = s] = Eπ[R+ γv̂(S′,w) | S = s]− v̂(s,w) for
δ = R+ γv̂(S′,w)− v̂(S,w)

∇wBE(w) =
∑
s∈S

d(s)∇wEπ[δ | S = s]2

= 2
∑
s∈S

d(s)Eπ[δ | S = s]Eπ[∇wδ | S = s]

= 2
∑
s∈S

d(s)Eπ[δ | S = s]Eπ
[
γ∇wv̂(S′,w)−∇wv̂(s,w) | S = s

]
To estimate this gradient for a given S = s, we need two independent samples of the next
state and reward. Then when we use the first to get a sample δ and the second to get
a sample of γ∇wv̂(S′,w) − ∇wv̂(s,w). The product of these two samples then gives an
unbiased sample of the product of the expectations. If we instead only used one sample, we
would erroneously obtain a sample of Eπ[δ(γ∇wv̂(S′,w)−∇wv̂(s,w)) | S = s].

There has been a promising attempt to approximate the BE, under restricted conditions,
using a non-parametric approach (Feng et al., 2019). The objective, called the KBE, takes
pairs of samples from a buffer to overcome the double sampling problem. Unfortunately, this
cannot overcome the issue of identifiability in the BE. There is a simple example where the
same data is generated by two different MDPs, with different optima for the corresponding
BE. The agent cannot hope to use the data to identify which of the two parameters is the
optimal solution, because the generated data even in the limit is identical for the two MDPs.
The simple conclusion is that we cannot hope to perfectly optimize the BE in all cases, and
would instead be optimizing an approximation.

The linear PBE, on the other hand, is practical to optimize under linear function
approximation, as discussed above: the whole family of (gradient) TD algorithms is designed
to optimize the linear PBE. Unfortunately, the PBE is hard to optimize for the general
nonlinear setting, because the projection is hard to compute. There has been an extension
of GTD to the nonlinear PBE (Maei et al., 2009), but the algorithm requires computing
Hessian-vector products. In the next section, we discuss how to overcome these issues, with
a unified objective, that is a generalization of the PBE.

Finally, for completeness, we conclude with a description of the Mean-Squared TD-error
(TDE), even though it is rarely used. The TDE was introduced to characterize the TD
solution as a semi-gradient method. For the objective

TDE(w)
def
=
∑
s∈S

d(s)Eπ
[(
R+ γv̂(S′,w)− v̂(s,w)

)2 | S = s
]
. (17)

the gradient includes the gradient of v̂(S′,w). TD omits this term, and so is called a semi-
gradient method. One could, however, actually use gradient descent on the TDE, though it is
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not typically done due to commonly held views of poor quality and a counterexample for the
residual gradient algorithm which uses the TDE (Sutton and Barto, 2018). We additionally
highlight the significant bias due when using the TDE, in Appendix A, providing further
evidence that it is likely not a useful direction to explore.

4.2 An Identifiable BE

Before discussing the generalized PBE, we start by showing a conjugate form for the BE.
This reformulation uses the strategy introduced by Dai et al. (2017), which more generally
introduces this conjugate form for several objectives that use conditional expectations. They
show how to use it for the BE as an example, but defined it slightly differently because
they condition on states and actions. For this reason, and because we will build further, we
provide the explicit steps to derive the conjugate form for the BE.

Let F be the space of parameterized value functions and Fall the space of all functions.
Then the BE can be re-expressed as

BE(w) = max
h∈Fall

∑
s∈S

d(s)
(
2Eπ[δ(w) | S = s]h(s)− h(s)2

)
This reformulation comes from the fact that the conjugate of the square function is y2 =
maxh∈R 2yh − h2 and because the maximum can be brought outside the sum, as long as
a different scalar h can be chosen for each state s, as it can be for Fall the space of all
functions. To see the explicit steps,

BE(w) =
∑
s∈S

d(s)Eπ[δ(w) | S = s]2

=
∑
s∈S

d(s) max
h∈R

(
2Eπ[δ(w) | S = s]h− h2

)
. using the conjugate function

= max
h∈Fall

∑
s∈S

d(s)
(
2Eπ[δ(w) | S = s]h(s)− h(s)2

)
. using interchangeability.

The optimal h∗(s) = Eπ[δ(w) | S = s], because

arg max
h∈Fall

∑
s∈S

d(s)
(
2Eπ[δ(w) | S = s]h(s)− h(s)2

)
= arg max

h∈Fall

∑
s∈S

d(s)
(

2Eπ[δ(w) | S = s]h(s)− h(s)2 − Eπ[δ(w) | S = s]2
)

= arg max
h∈Fall

−
∑
s∈S

d(s) (Eπ[δ(w) | S = s]− h(s))2

= arg min
h∈Fall

∑
s∈S

d(s) (Eπ[δ(w) | S = s]− h(s))2 .

The function h∗(s) = Eπ[δ(w) | S = s] provides the minimal error of zero. This optimal
solution also makes it clear why the above is simply a rewriting of the BE because

2Eπ[δ(w) | S = s]h∗(s)−h∗(s)2 = 2Eπ[δ(w) | S = s]2−Eπ[δ(w) | S = s]2 = Eπ[δ(w) | S = s]2 .
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More generally, for the continuous state case, interchangeability also holds, as long as
the function b(s) = Eπ[δ(w) | S = s] satisfies b ∈ Fall. Notice first that we could have more
generically expressed the BE using expectations over states: BE(w) = E[Eπ[δ(w) | S]2],
where the outer expectation is over the random variable S with distribution d. Let g(h, s) =
(Eπ[δ(w) | S = s]− h)2. Then, for the continuous state setting, we have that the BE is

E
[
min
h∈R

g(h, S)

]
=

∫
S
d(s) min

h∈R
g(h, s)ds = min

h∈Fall

∫
S
d(s)g(h(s), s)ds. (18)

We use a minimization over h, simply because the resulting g is more intuitive. Because b(s) =
Eπ[δ | S = s] satisfies b ∈ Fall, we know that a minimizer exists, as h∗ = b ∈ Fall. Then we
can show that E[minh∈R g(h, S)] = E[g(b(S), S)] = E[g(h∗(S), S)] = minh∈Fall

E[g(h(S), S)].2

As highlighted in (Sutton and Barto, 2018, Chapter 8), the BE is not identifiable. In that
example, however, the inputs given to the value function learner are partially observable. In
terms of the above formulation, this would mean the agent can only see a part of the state
for learning w but the whole state to learn h. This is not a realistic setting. Rather, if the
agent truly has a partial view of state to learn the values, then the input-space for h should
be similarly restricted. The function approximation for h could still be more powerful than
for v—the agent can chose to allocate its resources how it wants. This leads us to a new set
for h, which includes all functions on the same inputs φ(s) as given to v, rather than on
state:

Hall
def
= {h = f ◦ φ | where f is any function on the space produced by φ}.

The resulting h is restricted to functions of the form h(s) = f(φ(s)). We call the resulting
BE an Identifiable BE, written as:

Identifiable BE(w)
def
= max

h∈Hall

E
[
2Eπ[δ(w) | S]h(S)− h(S)2

]
.

Notice that Hall ⊆ Fall, and so the solution to the Identifiable BE may be different from the
solution to the BE. In particular, we know Identifiable BE(w) ≤ BE(w), because the inner
maximization is more constrained. In fact, restricting h can be seen as a projection on the
errors in the objective, as we discuss next, making the Identifiable BE an instance of the
generalized PBE.

4.3 From the Identifiable Bellman Error back to a Projected Bellman Error

The previous section discussed a conjugate form for the BE, which led to an Identifiable
BE. Even this Identifiable BE, however, can be difficult to optimize, as we will not be able
to perfectly represent any h in Hall. In this section, we discuss further approximations,
with h ∈ H ⊆ Hall, leading to a new set of Projected Bellman Errors that encompasses the
previously defined linear PBE.

2. This argument is similar to (Dai et al., 2017, Lemma 1), except they use a maximization, rather than a
minimization and make assumptions about g which for them is generic. Their argument exactly holds for
pulling out the minimum as well, but simply modifying the conditions to be lower semi-continuous and
convex, rather than upper semi-continuous and concave. We do not need to make these assumptions, as
we know the form of our g and can directly assume the existence of a minimizer.
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To use minimax formulation for the BE, we need to approximate h as an auxiliary
estimator. This means h must also be a parameterized function, and we will instead only
obtain an approximation to the BE. Let H be the space of parameterized functions for this
auxiliary function h. As we show below, this H defines the projection in the generalized
PBE.

As we showed above, the maximization over h can be written as a minimization using a
weighted squared error, to the function Eπ[δ(w) | S = s]. In the finite state setting, we simply
take the vector u ∈ |S| composed of entries Eπ[δ(w) | S = s]: the vector u = T v̂(·,w)−v̂(·,w).
The projection operator is

ΠH,du
def
= arg min

h∈H
‖u− h‖d (19)

Notice that u = ΠH,du+ ũ = h+ ũ, where h = ΠH,du and ũ is the component in u that is

orthogonal in the weighted space: h>Dũ = 0 for D
def
= diag(d). Then we get

PBE(w)
def
= max

h∈H

∑
s∈S

d(s)
(
2Eπ[δ(w) | S = s]h(s)− h(s)2

)
= max

h∈H

∑
s∈S

d(s)
(
2u(s)h(s)− h(s)2

)
. rewriting u(s) = Eπ[δ(w) | S = s]

=
∑
s∈S

d(s)
(
2u(s)h(s)− h(s)2

)
. where h = ΠH,du

=
∑
s∈S

d(s)
(
2(h(s) + ũ(s))h(s)− h(s)2

)
. because u(s) = h(s) + ũ(s)

=
∑
s∈S

d(s)
(
2h(s)2 − h(s)2

)
+ 2

∑
s∈S

d(s)ũ(s)h(s)

=
∑
s∈S

d(s)h(s)2 + 2
∑
s∈S

d(s)ũ(s)h(s)

=
∑
s∈S

d(s)h(s)2 . where
∑
s∈S

d(s)ũ(s)h(s) = 0 because

= ‖ΠH,d(T v̂(·,w)− v̂(·,w))‖2d h is orthogonal to ũ, under weighting d

Therefore each choice of H results in different projection operators. This view provides
a nice intuition on the role of approximating h. Depending on how errors are projected, the
value function approximation will focus more or less on the Bellman errors in particular
states. If the Bellman error is high in a state, but those errors are projected to zero, then
no further approximation resources will be used for that state. Under no projection—the set
for h being the set of all functions—no errors are projected and the values are learned to
minimize the Bellman error. If H = F , the same space is used to represent h and v, then we
obtain the projection originally used for the PBE.

4.4 Connection to Previous PBE Objectives

These min-max formulations, or saddlepoint formulations, have been used for the (linear)
PBE (Mahadevan et al., 2014; Liu et al., 2016; Touati et al., 2018). The goal there was to
directly re-express the PBE, rather than to re-express the BE or find connections between
them. The linear PBE = ‖b−Aw‖2C−1 can be rewritten using the conjugate for the two
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norm. The conjugate for the two-norm is 1
2‖y‖C−1 = maxh y>h − 1

2‖h‖
2
C, with optimal

h = C−1y. Correspondingly, we get

1
2‖b−Aw‖2C−1 = max

h∈Rd
(b−Aw)>h− 1

2‖h‖
2
C

where the solution for h = C−1(b − Aw). This solution makes the first term equal to
‖b−Aw‖2C−1 and the second term equal to −1

2‖b−Aw‖2C−1 ; adding them together gives
1
2‖b−Aw‖2C−1 .

We can obtain the same formulation under the generalized PBE, by restricting the sets F
and H to be the same set of linear functions. Let L = {f : S → R : f(s) = x(s)>w,w ∈ Rd}.
For F = H = L, we have

h∗ = arg min
h∈L

∑
s∈S

d(s) (Eπ[δ(w) | S = s]− h(s))2

satisfies h∗(s) = x(s)>h∗ where h∗ = C−1(b−Aw)

where the linear regression solution, for targets δ(w), is h∗ = E
[
xx>

]−1 E[xδ(w)] which
equals C−1(b−Aw). Verifying that the resulting PBE matches the linear PBE:

max
h∈L

∑
s∈S

d(s)
(
2Eπ[δ(w) | S = s]h(s)− h(s)2

)
=
∑
s∈S

d(s)2Eπ[δ(w) | S = s]x(s)>h∗ −
∑
s∈S

d(s)(x(s)>h∗)2

=

(∑
s∈S

d(s)2Eπ[δ(w) | S = s]x(s)>

)
h∗ −

∑
s∈S

d(s)(h∗)>x(s)x(s)>h∗

= 2E[δ(w)x(s)]> h∗ − (h∗)>

(∑
s∈S

d(s)x(s)x(s)>

)
h∗

= 2(b−Aw)h∗ − (h∗)>Ch∗

= 2‖b−Aw‖2C−1 − (h∗)>(b−Aw)

= 2‖b−Aw‖2C−1 − ‖b−Aw‖2C−1

= ‖b−Aw‖2C−1

This result is alluded to in the connection between the NEU and the KBE, in (Feng et al.,
2019, Corollary 3.5), but not explicitly shown.

This connection also exists with the nonlinear PBE, but with a surprising choice for
the parameterization of h: using the gradient of the value estimate as the features. The
nonlinear PBE was introduced for nonlinear value function approximations that are twice
differentiable, and is defined as (Maei et al., 2009)

nonlinear PBE(w) = E[δ(w)∇wv̂(s,w)]> E
[
∇wv̂(s,w)∇wv̂(s,w)>

]−1
E[δ(w)∇wv̂(s,w)]

This corresponds to the linear PBE when F = L, because ∇wv̂(s,w) = x(s). Define set
Gw = {f : S → R : f(s) = y(s)>h,h ∈ Rd and y(s) = ∇wv̂(s,w)}. Notice that this
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function set for h changes as w changes. Then we get that

h∗nonlinear = arg min
h∈Gw

∑
s∈S

d(s) (Eπ[δ(w) | S = s]− h(s))2

satisfies h∗nonlinear(s) = ∇wv̂(s,w)>h∗nonlinear where

h∗nonlinear = E
[
∇wv̂(s,w)∇wv̂(s,w)>

]−1
E[δ(w)∇wv̂(s,w)]

Plugging this optimal h back into the formula, and using similar steps to above, we get that

max
h∈Gw

∑
s∈S

d(s)
(
2Eπ[δ(w) | S = s]h(s)− h(s)2

)
=
∑
s∈S

d(s)
(
2Eπ[δ(w) | S = s]h∗nonlinear(s)− h∗nonlinear(s)

2
)

= 2nonlinear PBE(w)− nonlinear PBE(w)

= nonlinear PBE(w)

This nonlinear PBE is not an instance of the generalized PBE, as we have currently defined
it, because the H changes with w. It is possible that such a generalization is worthwhile, as
using the gradient of the values as features is intuitively useful. Further, interchangeability
should still hold, as the exchange of the maximum was done for a fixed w. Therefore, it
would be appropriate to assume that H changes with w, and in our experiments we test
H = Gw.

4.5 Summary Discussion

The implication of these connections is that we can strictly generalize the PBE, by considering
different sets H. The most important outcome is that we have natural choices to explore for
the nonlinear function approximation setting. As secondary outcomes, we also provide a
clear connection between the BE and PBE, based on a difference in the choice of projection,
and resolve the identifiability issue in the BE.

The next question how we should choose H, both ideally and practically. In the next
section, we provide some bounds on the VE, that include properties of H, as a first step
towards guiding our choice of H. These theoretical choices, however, might not always be
practical, because H is naturally restricted by our function approximators. Practically, it
is likely the simplest to use the same approximator for h as for the values. However, it is
possible that different criteria are used for selecting v̂ versus h. For example, we might want
v̂ to be efficient to query, and so use a compact parametric function approximator. On the
other hand, maybe h can be a bit more costly, since it is only used in training, not during
deployment.

Further, bias in h may be undesirable, pointing to using less efficient but less biased
nonparametric function approximators. For example, a reservoir of samples could be stored,
where Eπ[δ(w) | S = s] is aproximated using a weighted average over δ(w) in the buffer,
where the weighting is proportional to similarity between that state and s. The δ values
in similar states to s should be similar to δ in s, and so can provide a reasonable sample
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average estimator. This is the strategy taken by the Kernel BE (Feng et al., 2019), precisely
to reduce bias in h and so better approximate the BE. At the same time, its not clear that
reducing such bias is key, as solutions under the PBE are usually good despite projection.

The other reason the choice of H matters is for the optimization path itself, rather
than the resulting solution. In the next section, we discuss two strategies to optimize the
generalized PBE. We highlight that one approach—the saddlepoint update—suffers more
when there is bias in h. This saddlepoint update is the one used in previous approximations
to the BE, potentially explaining why they focused on nonparametric approximations. The
gradient correction update, on the other hand, relies much less heavily on accuracy of h
during the optimization, and so allows us to focus more on selecting a practical H based
primarily on the fixed point for the generalized PBE.

5. Algorithms for the Generalized PBE

The PBE is often optimized using gradient-correction algorithms as opposed to saddlepoint
methods. The canonical methods are TDC and GTD2, where TDC has been consistently
shown to perform better than GTD2 as it relies less on having an accurate estimator for h
(White and White, 2016; Ghiassian et al., 2020). The fact that the BE generalizes on the
PBE may not mean that the set of algorithms is also a strict generalization. We show in
this section that similar gradient-correction algorithms arise for the generalized PBE, with
some differences in the gradient-correction update for some choices of H. We conclude by
extending the algorithms to λ-returns and n-steps returns.

5.1 Estimating the Gradient of the Generalized PBE

To see why (at least) two classes of algorithms arise, consider the gradient update for the
generalized PBE, for a given h(s) ≈ Eπ[δ(w) | S = s] with a stochastic sample δ(w) from
S = s:

−∇wδ(w)h(s) = h(s)[∇wv(s,w)− γ∇wv(S′,w)]

This is the standard saddlepoint update. In GTD2, h is estimated using a linear function
approximator. The key issue with this form is that h can be highly inaccurate during
learning. Typically, it is initialized to zero, and so it multiples the update to the primary
weights by a number near zero, making learning slow. In general, any inaccuracy in h has a
big impact on the update of w.

The gradient-correction update is obtained by assuming the optimal h∗ ∈ H is used in a
part of the gradient. It has only be derived for the linear setting, but here we start with the
generic update and see how TDC emerges in this special case. We can rewrite

−∇wδ(w)h(s) = h(s)[∇wv(s,w)− γ∇wv(S′,w)]

= h(s)∇wv(s,w)− h(s)γ∇wv(S′,w)

= (h(s)− δ(w) + δ(w))∇wv(s,w)− h(s)γ∇wv(S′,w)

= δ(w)∇wv(s,w) + (h(s)− δ(w))∇wv(s,w)− h(s)γ∇wv(S′,w)

This resembles the TDC updates, except that it has an extra term (h(s)− δ(w))∇wv(s,w).
In the linear setting, if we have the true linear regression solution for h = E[xx>]−1E[xδ],
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then this second term is zero in expectation. This is because ∇wv(s,w) = x(s) and so

Eπ[(h(s)− δ(w))∇wv(s,w) | S = s] = Eπ[x(s)(h(s)− δ(w)) | S = s]

= Eπ
[
x(s)(x(s)>h− δ(w)) | S = s

]
= x(s)(x(s)>h− Eπ[δ(w) | S = s])

= x(s)x(s)>h− x(s)Eπ[δ(w) | S = s])

and so in expectation across all states

E[(h(S)− δ(w))∇wv(S,w)] = E[x(s)x(s)>]h− E[x(S)δ(w)]

= E[x(s)x(s)>]E[x(S)x(S)>]−1E[x(S)δ(w)]− E[x(S)δ(w)]

= E[x(S)δ(w)]− E[x(S)δ(w)] = 0

Therefore, this term can be dropped from the full gradient, across all states. The stochastic
gradient, then, can also omit this term and still be an unbiased estimate of the full gradient,
for the optimal h ∈ H.

More generally, the same reasoning applies if h(s) can be re-expressed as a linear function
of ∇wv(S,w). This provides further motivation for using features produced by the gradient
of the values, as in the nonlinear PBE, to estimate h. Another appropriate choice is to use
the features in the last layer of the neural network used for v(S,w). Because the output
is a linear weighting of features from the last layer, ∇wv(S,w) includes this last layer as
one part of the larger vector. A head for h can be added to the neural network, where h is
learned as a linear function of this layer. Its updates do not influence the neural network
itself, and gradients are not passed backwards through the network.

Gradient-correction updates are preferable because the gradient estimate relies less on
the accuracy of h(s). The first term uses only the sampled TD-error. The update, however,
is no longer a straightforward gradient update, complicating analysis. The saddlepoint
update is a standard gradient update, and so can rely on many theoretical results. The
gradient-correction update assumes we have the optimal h: that we have fully solved for h
for a given w. However, it is likely that we can characterize the dynamical system induced
by the following formulas which omit this second term:

∆w ← δ(w)∇wv(s,w)− h(s)γ∇wv(S′,w)

∆h← (δ(w)− h(s,h))∇hh(s,h)

The asymptotic solution does not require the omitted second term, under certain conditions
on h, as discussed above. If the dynamical system itself moves towards this stable solution,
then convergence could be shown. The TDC update, which is itself not a gradient update,
relies on just such a strategy: the joint update is rewritten as a linear system, that is then
shown to be a contraction that iterates towards a stable solution.

Remark: There is one other way to interpret gradient-correction algorithms, as an
approximation of the gradient of the Identifiable BE. Notice that we can consider two forms
for the negative gradient of the BE:

Eπ[δ | S = s]Eπ
[
∇wv̂(s,w)− γ∇wv̂(S′,w) | S = s

]
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or

Eπ[δ | S = s]∇wv̂(s,w)− Eπ[δ | S = s]Eπ
[
γ∇wv̂(S′,w) | S = s

]
because v̂(s,w) is not random. We can estimate the first form of the gradient using an
estimate h(s) ≈ Eπ[δ | S = s]:

h(s)(∇wv̂(s,w)− γ∇wv̂(S′,w))

This corresponds to a saddlepoint update. When estimating the second form of the gradient,
notice that we do not have a double sampling problem for the first term. This means we do
not need to use an estimate for Eπ[δ | S = s] and can instead use an unbiased sample.

δ∇wv̂(s,w)− h(s)γ∇wv̂(S′,w)

This strategy corresponds to the gradient correction update.

5.2 Extensions to n-step returns

There are further n-step variants of these objectives, where bootstrapping occurs only
after n steps: (Gt,n − v̂(St,w))2 where Gt,n = Rt+1 + γt+1Rt+2 + . . . + γt+1:t+nRt+n +
γt+1:t+n+1v̂(St+n+1,w) where γt+1:t+n = γt+1γt+2 . . . γt+n. The extreme of n-step returns is
to use the full return with no bootstrapping, as in Monte Carlo methods, with the objective
becoming the RE. The conjugate form and derivations above extend to n-step returns,
simply by considering the n-step Bellman operator and corresponding n-step TD error:

δ(n)(w)
def
= Rt+1 + γt+1Rt+2 + . . .+ γt+1:t+nRt+n + γt+1:t+n+1v̂(St+n+1,w)− v(St,w)

with importance sampling ratios included, in the off-policy setting. The n-step generalized
PBE is maxh∈H Ed[2Eπ

[
δ(n)(w) | S = s

]
h(s)− h(s)2]. The function h is trying to estimate

the expected n-step return from s: Ed[2Eπ
[
δ(n)(w) | S = s

]
. The saddlepoint update for w

is
∆w ← h(St) (∇wv(St,w)− h(St)γt+1:t+n+1∇wv(St+n+1,w))

and the gradient-correction update is

∆w ← δ(n)(w)∇wv(St,w)− h(St)γt+1:t+n+1∇wv(St+n+1,w)

where both use the same update for h:

∆h← −(δ(n)(w)− h(St,h))∇hh(St,h)

The primary difference when considering n-step returns is that, for large n, it is less
necessary to estimate h. For large n, the correlation between δ(n)(w) and v(St+n+1,w)
becomes smaller. Consequently, it would not be unreasonable to use δ(n)(w)∇wv(St,w)−
δ(n)(w)γt+1:t+n∇wv(St+n+1,w), as the incurred bias is likely small. Further, if the discount
per step is less than 1, then the gradient correction term also diminishes in importance,
because it is pre-multiplied by γt+1:t+n+1. For example, for a constant γ < 1, we get
γt+1:t+n = γn. One might expect that the gradient-correction update might have an even
greater advantage here over the saddlepoint update. It remains an open question as to the
relationship between n and some of these choices.
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6. Bounding Value Error and the Impact of Weighting on Solution
Quality

The desired objective to minimize is the value error. We can ask how minimizing surrogate
objectives, like the PBE, relates to the value error. Let dobj be the desired weighting on
states, and d the weighting used in the surrogate objective. It is possible that d 6= dobj

produces better values estimates for the VE weighted by dobj. In fact, we already know
several cases where that is true, where the linear PBE with dobj = d = db can result in
arbitrarily bad VE—even though it is weighted by the same db—but changing d to the
emphatic weighting, d = m, prevents this bad outcome.

In this section, we characterize the solution quality under the generalized PBE, which
depends both on H and d. Let vwH,d be the solution the generalized PBE. Our goal is to
find bounds of the form

‖vwH,d − vπ‖dobj ≤ C(dobj, d,H)‖ΠF ,dvπ − vπ‖d
where the constant in the bound depends on the two weightings, and the projection set H.
The term ‖ΠF ,dvπ − vπ‖d represents the best approximation error we could have for our
function class F , if we were able to directly minimize the VE under our weighting d. This
goal is similar to that of (Yu and Bertsekas, 2010, Equation 5), generalized to the nonlinear
setting and where d may not equal dobj. We start by describing such results when H = F ,
and then generalize to H ⊃ F in the following subsection.

6.1 Upper Bound on VE when H = F

Throughout this section we will assume that H = F , so that the projection operator for
both the objective and value function space is the same. This matches the setting original
proposed for the PBE, though here we explicitly assume that the projection can be nonlinear.

Our goal is to characterize the solution to the generalized PBE, vwH,d = ΠF ,dT vwH,d .
There are two steps to these results. The first step is to show that T is a contraction under
norm ‖ · ‖d, with contraction constant sd. If sd < 1, then it immediately follows that

‖vwH,d − vπ‖d ≤ (1− sd)−1‖ΠF ,dvπ − vπ‖d (20)

See (Bertsekas and Tsitsiklis, 1996, Lemma 6.9) or (White, 2017, Theorem 1) for this result.
For the second step, we can define

κ(dobj, d)
def
= max

s∈S

dobj(s)

d(s)
(21)

and get that

‖vwH,d − vπ‖
2
dobj

=
∑
s∈S

dobj(s)(vwH,d(s)− vπ(s))2

=
∑
s∈S

dobj(s)
d(s)

d(s)
(vwH,d − vπ)2

≤ κ(dobj, d)
∑
s∈S

d(s)(vwH,d − vπ)2

≤ κ(dobj, d)‖vwH,d − vπ‖
2
d.
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Combined with the inequality in Equation (20), we obtain

‖vwH,d − vπ‖dobj ≤
√
κ(dobj, d)(1− sd)−1‖ΠF ,dvπ − vπ‖d

with C(dobj, d,H) =
√
κ(dobj, d)(1− sd)−1. Under d = dπ and d = m, we know that sd < 1

(White, 2017, Theorem 1).

These bounds identify three key sources of error in our value function approximation:
the behavior-target mismatch, the contraction rate and the approximation error of our
function class. If our function class contains the true value function vπ—the approximation
error ‖Πdvπ − vπ‖d = 0— then the VE is zero regardless of the contraction rate or behavior-
target mismatch. If the behavior equals the target policy—the on-policy setting—then
κ(dobj, d) = 1; otherwise, it strictly increases the bound. The contraction constant is
sd = ‖Pπ,γ‖d, where Pπ,γ(s, s′) = Eπ[p(s′|s,A)γ(s,A, s′)]. For constant γ, sd = ‖Pπ,γ‖d ≤ γ.
More generally, for the episodic setting where γ is zero only for terminal transitions, and 1
otherwise, we do not as yet have a clear characterization of this constant.

6.2 Upper Bound on VE when H ⊇ F

We next extend this result to more general projections, i.e., for any function space H ⊇ F ,
that includes the BE and PBE as special cases. We start by re-expressing the generalized
PBE as a weighted VE, using the same approach as Schoknecht (2003) and Scherrer (2010).
Let vw be the vector consisting of value function estimates v(s,w). Notice first that
vπ = (I − Pπ,γ)−1rπ. Then the generalized PBE, written in projection form, is

‖ΠH,d(Tvw − vw)‖2dobj = ‖ΠH,d(rπ + Pπ,γvw − vw)‖2dobj
= ‖ΠH,d(rπ − (I − Pπ,γ)vw)‖2dobj
= ‖ΠH,d[(I − Pπ,γ)vπ − (I − Pπ,γ)vw]‖2dobj . rπ = (I − Pπ,γ)vπ

= ‖ΠH,d(I − Pπ,γ)(vπ − vw)‖2dobj
= ‖vπ − vw‖2H . H

def
= (I − Pπ,γ)>Π>H,dDΠH,d(I − Pπ,γ)

with vw ∈ F . Minimizing the generalized PBE therefore corresponds to minimizing the VE
with a reweighting over states that may no longer be diagonal, as H is not a diagonal matrix.
In fact, we can see that the solution to the generalized PBE is a projection of vπ onto set
F under weighting H: v = ΠF ,Hvπ. A projection under such a non-diagonal weighting is
called an oblique projection.

Using this form, we can obtain an upper bound using a similar approach to (Scherrer,
2010, Proposition 3).

Theorem 1 If H ⊇ F , then the solution vwH,d to the generalized PBE satisfies

‖vπ − vwH,d‖d ≤ ‖ΠF ,H‖d‖vπ −ΠF ,dvπ‖d. (22)

Proof If ΠF ,H is the identity—a trivial projection—then the result immediately follows.
This is because this implies vπ ∈ F , and so both sides of the equation are zero.
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Otherwise, assume ΠF ,H is a non-trivial projection. Notice that ΠF ,HΠF ,d = ΠF ,d,
because the first projection already projects to the set F and so applying ΠF ,H has no effect.
Now for any v,

(I −ΠF ,H)(I −ΠF ,d)v = (I −ΠF ,H −ΠF ,d + ΠF ,HΠF ,d)v

= (I −ΠF ,H −ΠF ,d + ΠF ,d)v

= (I −ΠF ,H)v

because by assumption ΠF ,HΠF ,d = ΠF ,d. Therefore we get that

‖vπ − v‖d = ‖vπ −ΠF ,Hvπ‖d
= ‖(I −ΠF ,H)vπ‖d
= ‖(I −ΠF ,H)(I −ΠF ,d)vπ‖d
≤ ‖I −ΠF ,H‖d‖(I −ΠF ,d)vπ‖d
= ‖I −ΠF ,H‖d‖vπ −ΠF ,dvπ‖d
= ‖ΠF ,H‖d‖vπ −ΠF ,dvπ‖d

where the last step follows from the fact that for a non-trivial projection operator, ‖ΠF ,H‖d =
‖I −ΠF ,H‖d (Szyld, 2006, Theorem 2.3).

Corollary 2 If H = F and d is such that sd
def
= ‖Pπ,γ‖d < 1, then ‖ΠF ,H‖d ≤ (1− sd)−1.

An important insight from the above is that there is a connection between convergence
of TD—and generally under iteration of the projected Bellman operator—and the quality
of the solution. We only have a bound on the value error when the norm of the projected
operator has spectral radius less than 1. This is the same condition required to show that
TD converges. This suggests that gradient methods only take us so far, since they prevent
divergence but will find a poor solution. Instead, it’s likely important to also ensure the
weighting and features are controlled.

7. Experiment 1: Emphatic Weightings and the Generalized PBE

In this section, we empirically investigate the quality of the solution under the PBE and
BE, when using emphatic weightings. We show the quality of the solution under three
different weightings, db, dπ and m, in both the objective that is optimized and the evaluation
objective dobj, under different function spaces.

We compute the fixed-point of each objective on a 19-state random walk with ran-
domly chosen target and behavior policies. To isolate the impact of representation on the
fixed-points, we investigate several forms of state representation where vπ is outside the
representable function class. We include the Dependent features from Sutton et al. (2009),
randomly initialized sparse ReLu networks, tile-coded features, and state aggregation.

The random-walk has 19 states with the left-most and right-most state being terminal.
The reward function is zero everywhere except on transitioning into the right-most terminal
state where the agent receives +1 reward, and on the left-most terminal state where the
agent receives -1 reward. The discount factor is set to γ = 0.99.
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Figure 2: Investigating the fixed-points of PBE and BE under db, dπ, and m on a 19-state
random walk. The fixed-point of the PBE with emphatic weighting consistently has the
lowest error across several different state representations; while the fixed-point of the PBE
under db has the highest error. Results are averaged over one million randomly generated
policies and state representations.

We run each experimental setting one million times with a different randomly initialized
neural network, random offset between tilings in the tile-coder, and randomly sampled target
and behavior policy. The policies are chosen uniformly randomly on the standard simplex.
The neural network is initialized with a Xavier initialization (Glorot and Bengio, 2010),
using 76 nodes in the first hidden layer and 9 nodes in the final “feature” layer. Then
25% of the neural network weights are randomly set to zero to encourage sparsity between
connections and to increase variance between different randomly generated representations.
The tile-coder uses 4 tilings each offset randomly and each containing 4 tiles. The state
aggregator aggressively groups the left-most states into one bin and the right-most states
into another, creating only two features.

Figure 2 shows the normalized log-error of the fixed-points of PBE and BE under each
weighting. The error is computed by subtracting the VE of the best representable value
function, then scaling by the maximum VE among the fixed-points for a given feature
representation (i.e. by the maximum for each column of Figure 2), thus yielding an error
between zero and one for each column. The fixed-points are computed using their least-
squares closed form solutions given knowledge of the MDP dynamics. Plotted is the mean
error across the one million randomly initialized experimental settings. The standard error
between settings is negligibly small.

Interestingly, the fixed-points corresponding to weighting db consistently have the highest
error across feature representations, even on the excursion VE error metric. One notable
exception is the fixed-point of the BE under db with the neural network feature representation,
where the error is significantly less than under the corresponding PBE. The PBE under
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emphatic weighting, m, consistently has the lowest error across all feature representations
and both emphatic and alt-life weightings of the VE.

8. Objectives for Control

The previous development was strictly for policy evaluation. The formulation of a sensible
generalized PBE for control, however, can be obtained using a similar route. The conjugate
form has already been used to develop a novel control algorithm for nonlinear function
approximation, called SBEED (Dai et al., 2018). The SBEED algorithm explicitly maintains
a value function and policy, to incorporate entropy regularization, and uses the saddlepoint
update. We develop an alternative control algorithm, that learns only action-values and the
gradient-correction update.

Assume now that we learn parameterized action-values q(·,w). Instead of the Bellman
operator, we use the Bellman optimality operator or generalizations that use other forms of
the max but are still guaranteed to be contractions, like the mellow-max operator (Asadi
and Littman, 2017). Let m be the given max operator, that takes action-values and returns
a (soft) greedy value. In Q-learning, we use a hard-max m(q(s, ·)) = maxa q(s, a) and in

mellow-max, m(q(s, ·)) = β−1 log
(

1
|A|
∑

a∈A exp(βq(s, a))
)

. As β → ∞, the mellow-max

operator approaches the hard-max operator.

The Bellman optimality operator Tm corresponds to

(Tmq)(s, a)
def
= Eπ

[
R+m(q(S′, ·)) | S = s,A = a

]
(23)

We can then define the BE for control as

BE(w)
def
=
∑
s,a

d(s, a)
(
Eπ
[
R+m(q(S′, ·;w)) | S = s,A = a

]
− q(s, a;w)

)2
(24)

for some weighting d : S × A → [0,∞). We override the notation for the weighting d, to
make the connection to the previous objectives clear. Let δ(w) = R + m(q(S′, ·;w)). As
above, we can use a dual form and get

BE(w) =
∑

s∈S,a∈A
d(s, a) (Eπ[δ(w) | S = s,A = a]− q(s, a;w))2

=
∑

s∈S,a∈A
d(s, a) max

h∈R

(
2Eπ[δ(w) | S = s,A = a]h− h2

)
. conjugate function

= max
h∈Fall

∑
s∈S,a∈A

d(s, a)
(
2Eπ[δ(w) | S = s,A = a]h(s, a)− h(s, a)2

)
. interchangeability

As before, this maximization can be rewritten as a minimization,

arg max
h∈Fall

∑
s∈S,a∈A

d(s, a)
(
2Eπ[δ(w) | S = s,A = a]h(s, a)− h(s, a)2

)
= arg min

h∈Fall

∑
s∈S,a∈A

d(s, a) (Eπ[δ(w) | S = s,A = a]h(s, a)− h(s, a))2
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where the optimal h∗(s, a) = Eπ[δ(w) | S = s,A = a]. Note that this is true, even if we use
the hard-max operator rather than the mellow-max, even though the operator is no longer
smooth. The mellow-max might still be a preferable choice, for a smoother optimization.
Finally, in practice, we will learn an approximate h, from the set H, resulting in a projected
Bellman error.

The resulting objective is the first generalized PBE for learning action-values for control,
with projection given by the choice of H. The algorithm is a simple modification of the
policy evaluation algorithms above. The update to h(s, a) is still a gradient of a squared
error to the TD error. Consider the gradient update for the generalized PBE, for a given
h(s, a) with a stochastic sample δ(w) from S = s,A = a:

−∇wδ(w)h(s, a) = h(s, a)[∇wq(s, a;w)− γ∇wm(q(S′, ·;w))]

with gradient-correction form

δ(w)∇wq(s, a;w)− γh(s, a)∇wm(q(S′, ·;w))

The primary difference in the update for w is that the second term—the gradient correction
term—involves the gradient through the max operator m. For the hard-max operator, this
results in a subgradient. The mellow-max operator, on the other hand, is differentiable with
derivative, for u = 1

|A|
∑

a∈A exp(βq(s, a;w))

∂

∂wi
m(q(s, ·;w)) = β−1 1

u

∂

∂wi
u

= β−1 1

u

1

|A|
∑
a∈A

∂

∂wi
exp(βq(s, a;w))

= β−1 1

u

1

|A|
∑
a∈A

β exp(βq(s, a;w))
∂

∂wi
q(s, a;w)

=
1∑

a∈A exp(βq(s, a;w))

∑
a∈A

exp(βq(s, a;w))
∂

∂wi
q(s, a;w)

Now the question is if we still have the same cancellation of the second term, for the
gradient-correction approach.

−∇wδ(w)h(s, a) = (h(s, a)− δ(w) + δ(w))∇wq(s, a;w)− h(s, a)γ∇wm(q(S′, ·;w))

= δ(w)∇wq(s, aw) + (h(s, a)− δ(w))∇wq(s, a;w)− h(s, a)γ∇wm(q(S′, ·;w))

Therefore, as before, we can conclude that we can drop this second term, as long as the
optimal h ∈ H is representable as a linear function of ∇wq(s, a;w). The fixed point for
the gradient-correction updates that drop the term (h(s, a)− δ(w))∇wq(s, a;w) will still
converge to the same fixed point, if they converge. The key question that remains is, if the
dynamical system produced by these equations does in fact converge.

9. Experiment 2: Control with the Generalized PBE

In this section, we compare Q-learning, SBEED and QRC—the control algorithm for the
generalized PBE.
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Appendix A. The Bias of the TDE

In this section, we highlight that the TDE can impose significant bias on the value function
solution, to reduce variance of the targets in the TD-error. This could have utility for
reducing variance of updates in practice. But, when considering the optimal solution for
the TDE—as opposed to the optimization path to get there—it suggests that the TDE is a
poor choice of the objective.

We can similarly write the TDE as a decomposition, in terms of both the BE and the
PBE. The TDE decomposes into the BE and a bias term due to correlation between samples

Eπ
[(
R+ γV (S′)− V (s)

)2 | S = s
]

= Eπ
[(
R+ γV (S′)− Eπ

[
R+ γV (S′) | S = s

]
+ Eπ

[
R+ γV (S′) | S = s

]
− V (s)

)2 | S = s
]

= Eπ
[(
R+ γV (S′)− Eπ

[
R+ γV (S′) | S = s

])2 | S = s
]

+
(
Eπ
[
R+ γV (S′) | S = s

]
− V (s)

)2
giving

TDE = ‖V − T V ‖2D + E
[
Var[R+ γV (S′)|S = s]

]
(25)

This further yields an equality between the PBE and the TDE

TDE = ‖V −ΠDT V ‖2D + ‖T V −ΠDT V ‖2D + E
[
Var[R+ γV (S′)|S = s]

]
(26)

This variance penalty encourages finding value functions that minimize the variance
of the target. Notice that this connection exists in supervised learning as well, by simply
considering the case where γ = 0. The BE include terms (Eπ[R | S = s]− V (s))2 and the

TDE is the standard squared error Eπ
[
(R− V (s))2 | S = s

]
. In regression, this additional

variance penalty has no impact on the optimal solution, because it does not include V :
E[Var[R+ 0 · V (S′)|S = s]] = E[Var[R|S = s]].

Now the question is if it is useful to learn V that results in a lower-variance target.
One benefit is that the estimator itself could have lower variance, and so for a smaller
number of samples this could warrant the additional bias in V . TODO: think of an actual
example. When comparing these objectives in their ideal forms, over all states under function
approximation, it is an undesirable penalty on the value estimates. TODO: give example,
maybe even with a simple environment where the fixed point is poor.
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Appendix B. A Survey of Off-Policy Algorithms for the Linear PBE

In this section, we describe the methods used in the empirical study that follows next. In
particular, we discuss the optimization objective, and provide detailed update equations
highlighting how prior or posterior corrections are used in each method. We begin with the
Gradient-TD family of methods that minimize the excursion variant of the linear PBE. We
then discuss modifications on GTD(λ)—namely the Hybrid methods and the Saddlepoint
methods. Then we discuss the second family of off-policy methods, the Emphatic methods.
We conclude with a discussion of several methods that reduce variance of posterior corrections,
using action-dependent bootstrapping.

B.1 Gradient Temporal Difference Learning

Gradient-TD methods were the first to achieve stability with function approximation using
gradient descent (Sutton et al., 2009). This breakthrough was achieved by creating an
objective function, the linear PBE, and a strategy to sample the gradient of the linear PBE.
The negative of the gradient of the linear PBE, with weighting d = db, can be written:

∇linear PBE(w) = Edb
[
δ(S,A, S′)z(S)

]
(27)

− Edb
[
γ(S′)x(S′)x(S)

>]
Edb
[
x(S)x(S)

>]−1Edb
[
δ(S,A, S′)z(S)

]
.

Sampling this gradient is not straightforward due to the product of expectations. To resolve
this issue, a second weight vector, h, can be used to estimate Edb [xtx>t ]−1Edb [δtzt] and
avoid the need for two independent samples. The resultant method, called GTD(λ), can be
thought of as approximate stochastic gradient descent on the linear PBE and is specified by
the following updated equations:

ht+1 ← ht + αh
[
δtz

ρ
t − (h

>
t x)xt+1

]
wt+1 ← wt + αδtz

ρ
t − αγt+1(1− λ)(h

>
t z

ρ
t )xt+1︸ ︷︷ ︸

correction term

(28)

The GTD(λ) algorithm has several important details that merit further discussion. The
most notable characteristic is the second weight vector h ∈ Rk that forms a quasi-stationary
estimate of the last two terms in the gradient of the linear PBE. The corresponding two-
timescale analysis highlights that the learning rate parameter αh ∈ R should be larger than
α, where the weights w change slower to enable h to obtain such a quasi-stationary estimate
(Sutton et al., 2009). In practice, the best values of α and αh are problem dependent, and
the practitioner must tune them independently to achieve good performance (White, 2015;
White and White, 2016). Another important detail is that the first part of the update to w
corresponds to Off-policy TD(λ). When λ = 1, the second term—the correction term—is
removed, making GTD(1) = TD(1). Otherwise, for smaller λ, the correction term plays a
bigger role.

The GTD(λ) algorithm has been shown to be stable with linear function approximation.
The GTD(λ) with λ = 0, also known as TDC, has been shown to converge in expectation
with i.i.d sampling of states (Sutton et al., 2009). The convergence of Gradient-TD methods
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with λ > 0 was later shown in the Markov noise case with constant stepsize and stepsizes
that approach zero in the limit (Yu et al., 2017).

The GTD2(λ) algorithm is related to GTD(λ), and can be derived starting from the
gradient of the excursion linear PBE in Equation 27. The gradient of the linear PBE given
in Equation 27 is an algebraic rearrangement of:

∇linear PBE(w) = Edb
[
(x(S)−γ(S′)x(S′))z(S)

>]
Edb
[
x(S)x(S)

>]−1Edb
[
δ(S,A, S′)z(S)

]
.

As before, the last two terms can again be replaced by a secondary weight vector h ∈ Rk.
The resultant expression

Edb
[
(x(S)− γ(S′)x(S′))z(S)

>]
h,

can be sampled resulting in an algorithm that is similar to GTD(λ), but differs in its update
to the primary weights:

wt+1 ← wt + α(h
>
t xt)xt − αγt+1(1− λ)(h

>
t z

ρ
t )xt+1. (29)

This update does not make use of the TD-error δt, except through the secondary weights
h. The GTD2(λ) algorithm performs stochastic gradient descent on the linear PBE, unlike
GTD(λ), which uses an approximate gradient, as we discuss further in Section B.3 when
describing the Saddlepoint methods.

B.2 Hybrid TD methods

The Hybrid TD methods were created to achieve the data efficiency of TD(λ) when data is
sampled on-policy, and the stability of Gradient-TD methods when the data is sampled off-
policy. Early empirical experience with TD(0) and GTD(0) in on-policy problems suggested
that TD(0) might be more sample efficient (Sutton et al., 2009). Later studies highlighted
the need for additional empirical comparisons to fully characterize the relative strengths of
GTD(λ) compared with TD(λ) (Dann et al., 2014; White and White, 2016).

Hybrid TD methods were first proposed by Maei (2011) and Hackman (2013) and were
further developed to make use of eligibility traces by White and White (2016). The derivation
of the method starts with the gradient of the excursion linear PBE. Recall from Equation
(9) that the linear PBE can be written (b−Aw)>C−1(b−Aw). The matrix C is simply the
weighting in the squared error for b−Aw. In fact, because we know every solution to the
linear PBE satisfies b−Aw = 0, the choice of C asymptotically is not relevant, as long as
it is positive definite. The gradient of the linear PBE, −A>C−1(b−Aw) can therefore be
modified to −A>B(b−Aw), for any positive definite B, and should still converge to the
same solution(s).

In order to achieve a hybrid learning rule, this substitution must result in an update
that reduces to the TD(λ) update when π = b. This can be achieved by setting B =

Edb

[(
xt−γt+1xt+1

)
zt

]
, which is the A matrix for the behavior. Because this B is estimated

with on-policy samples—since we are following b—we know B is positive semi-definite
(Sutton, 1988), and positive definite under certain assumptions on the features. Further,
when b = π, we have that B = A−>, giving update −A>B(b−Aw) = b−Aw. The TD(λ)
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update is a stochastic sample of expected update b−Aw, and so when HTD(λ) uses a
stochastic sample of −A>B(b−Aw) when b = π, it is in fact using the same update as
TD(λ).

The HTD(λ) algorithm is:

ht+1 ← ht + αh

[
δtz

ρ
t − (xt − γt+1xt+1)(h

>
t zt)

]
wt+1 ← wt + α

[
δtz

ρ
t − (xt − γt+1xt+1)(zρt − zt)

>
ht

]
(30)

HTD(λ) has two eligibility trace vectors, with z being a conventional accumulating eligibility
trace for the behavior policy. If π = b, then all the ρt are 1 and zt = zρt , which causes the
last term in the w update to be zero and the overall update reduces to the TD(λ) algorithm.
The last term in the w update applies a correction to the usual Off-policy TD(λ).

Like GTD(λ), the HTD(λ) algorithm is a posterior correction method that should
converge to the minimum of the excursion variant of the linear PBE. No formal stochastic
approximation results have been published, though the expected update is clearly convergent
because A>BA is positive semi-definite. This omission is likely due to the mixed empirical
results achieved with Hybrid TD methods Markov chains and random MDPs (Hackman,
2013; White and White, 2016).

B.3 Gradient-TD methods based on a saddlepoint formulation

Optimization of the linear PBE can be reformulated as a saddle point problem, yielding
another family of stable Off-policy TD methods based on gradient descent. These include
the original Proximal-GTD methods (Liu et al., 2016, 2020) methods, stochastic variance
reduction methods for policy evaluation (Du et al., 2017), and gradient formulations of
Retrace and Tree Backup (Touati et al., 2018). The linear PBE can be rewritten using
convex conjugates:

linear PBE(w) = min
h

(b−Aw)>h− 1
2‖h‖

2
C (31)

where the weighted norm ‖h‖2C = h>Ch.
The utility of this saddlepoint formulation is that it removes the product of expectations,

with the explicit addition of an auxiliary variable. This avoids the double sampling problem,
since for a given h, it is straightforward to sample (b −Aw)>h (see Equation (8)) with

sample δtz
ρ
t
>
h. It is similarly straightforward to sample the gradient of this objective for a

given h. Now this instead requires that this auxiliary variable h be learned. The resulting
algorithm is identical to GTD2(0) when using stochastic gradient descent for this saddle
point problem. This result is somewhat surprising, because GTD2(0) was derived from the
gradient of the linear PBE using a quasi-stationary estimate of a proportion of the gradient.

The saddle point formulation—because it is a clear convex-concave optimization problem—
allows for many algorithmic variants. For example, stochastic gradient descent algorithm for
this convex-concave problem can incorporate accelerations, such as mirror-prox—as used by
Liu et al. (2020) variance reduction approaches—as used (Du et al., 2017). This contrasts
the original derivation for GTD2(λ), which used a quasi-stationary estimate and was not
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obviously a standard gradient descent technique. One such accelerated algorithm is Proximal
GTD2(λ), described by the following update equations:

ht+ 1
2
← ht + αh

[
δtz

ρ
t − (h

>
t xt)xt

]
(32)

wt+ 1
2
← wt + α(h

>
t xt)xt − αγt+1(1− λt+1)(h

>
t z

ρ
t )xt+1 (33)

δt+ 1
2

def
= Rt+1 + γt+1w

>

t+ 1
2

xt+1 −w
>

t+ 1
2

xt (34)

ht+1 ← ht + αh

[
δt+ 1

2
zρt − (h

>

t+ 1
2

xt)xt

]
(35)

wt+1 ← wt + α(h
>

t+ 1
2

xt)xt − αγt+1(1− λt+1)(h
>

t+ 1
2

zρt )xt+1 (36)

The double update to w and h, denoted by subscripts t+ 1
2 and t + 1, is produced by

applying the Stochastic Mirror-Prox acceleration (Juditsky et al., 2011) to the gradient
descent update derived from Equation 31. We will refer to this algorithm by the shorthand
name PGTD2 in the figures.

The saddle point formulation cannot be applied to derive an accelerated version of
GTD(λ). Recall that GTD(λ) was obtained by reordering expectations in the gradient of
the linear PBE, and then using quasi-stationary estimates of different expected values. This
alternative formulation cannot obviously be written as a saddle point problem—though it
has nonetheless been shown to be convergent. Nevertheless, a heuristic approximation of
accelerated Proximal GTD(λ) has been proposed (Liu et al., 2020), and its update equations
are similar to that of Proximal GTD2(λ) with difference in updating the weight vector w:

wt+ 1
2
← wt + αδtz

ρ
t − αγt+1(1− λt+1)(h

>
t z

ρ
t )xt+1 (37)

wt+1 ← wt + αδt+ 1
2
zρt − αγt+1(1− λt+1)(h

>

t+ 1
2

zρt )xt+1 (38)

We will refer to this algorithm by the shorthand name PGTD in the figures.

Both Proximal GTD(λ) and Proximal GTD2(λ) minimize the excursion variant of linear
PBE, as they assume d = db. The idea of the saddlepoint formulation, however, is more
general and alternatives weightings could be considered, such as d = dπ (shown in Table 1).
The expectations in the linear PBE would simply change, and prior corrections would need
to be incorporated to get an unbiased sample of b−Aw weighted by dπ.

The practical utility of these methods for online estimation is still not well understood.
Several of the accelerations mentioned above, such as the use of stochastic variance reduction
strategies (Du et al., 2017), assume a batch learning setting. The online algorithms, as
mentioned, all use variants of GTD2(λ), which seems to perform more poorly than GTD(λ)
in practice (Touati et al., 2018). This saddle point formulation, however, does enable
continued advances in online convex optimization to be ported to reinforcement learning.
Additionally, this formulation allows analysis tools from optimization to be applied to the
analysis of TD learning methods. For example, Touati et al. (2018) provided the first finite
sample analysis for GTD2(λ), which is not possible with the original GTD2(λ) derivation
based on the quasi-stationary secondary weights.

42



B.4 Off-policy learning with action-dependent boostrapping

A common concern with using importance sampling ratios is the possibility for high variance,
due to large ratios.3 Several methods have been introduced that control this variance, either
by explicitly or implicitly avoiding the product of importance sampling ratios in the traces.
The Tree Backup(λ) algorithm, which we call TB(λ), was the first off-policy method that
did not explicitly use importance sampling ratios (Precup et al., 2000). This method decays
traces more, incurring more bias; newer algorithms such as V-trace(λ) and ABQ(ζ) attempt
to reduce variance but without decaying traces as much, and improve performance in practice.
In this section, we describe the state-value prediction variants of TB(λ), V-trace(λ), and
ABQ(ζ) that we investigate in our empirical study.

These three methods can all be seen as Off-policy TD(λ) with λ generalized from a
constant to a function of state and action. This unification was highlighted by Mahmood et al.
(2017) when they introduced ABQ. This unification makes explanation of the algorithms
straightforward: each method simply uses a different action-dependent trace function
λ : S ×A → [0, 1]. All three methods were introduced for learning action-values; we present
the natural state-value variants below.

We begin by providing the generic Off-policy TD algorithm with action-dependent traces.
The key idea is to set λt

def
= λ(St−1, At−1) such that ρt−1λt is well-behaved. The Off-policy

TD(λ) algorithm for this generalized trace function can be written4

wt+1 = wt + αρtδtzt

zt = γtρt−1λtzt−1 + xt, (39)

Now we can specify different algorithms using this generic variant of Off-policy TD(λ),
by specifying different implementations of the λ function. Like Off-policy TD(λ), these
algorithms all perform only posterior corrections.

TB(λ) is Off-policy TD(λ) with λt = bt−1λ, for some tuneable constant λ ∈ [0, 1].
Replacing λt with bt−1λ in the eligibility trace update in Equation 39 simplifies as follows:

zt = γt
πt−1

bt−1
bt−1λzt−1 + xt

= γtπt−1λzt−1 + xt, (40)

and gives the state-value variant of TB(λ).

A simplified variant of the V-trace(λ) algorithm (Espeholt et al., 2018) can be derived

with a similar substitution: λt = min
(

c̄
πt−1

, 1
bt−1

)
λbt−1, where c̄ ∈ R+ and λ ∈ [0, 1] are

3. We would like to note that, to the best of our knowledge, variance issues due to importance sampling
ratios have not been concretely demonstrated in the literature. This concern, therefore, is based on
intuition and should be considered a hypothesis rather than a known phenomenon.

4. This update explicitly uses ρt in the update to wt+1. This contrasts the earlier Off-policy TD updates in
Equation (4), which have ρt in the trace. These two forms are actually equivalent, in that the update to
w is exactly the same. We show this equivalence in Appendix ??. We use this other form here, to more
clearly highlight the relationship between ρt−1 and λt.
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both tuneable constants. The eligibility trace update becomes:

zt = γt min

(
c̄

πt−1
,

1

bt−1

)
λbt−1

πt−1

bt−1
zt−1 + xt

= γt min

(
c̄

πt−1
,

1

bt−1

)
λπt−1zt−1 + xt

= γt min

(
c̄πt−1

πt−1
,
πt−1

bt−1

)
λzt−1 + xt

= γt min (c̄, ρt−1)λzt−1 + xt, (41)

The parameter c̄ is used to cap importance sampling ratios in the trace. Note that it is not
possible to recover the full V-trace(λ) algorithm in this way. The more general V-trace(λ)
algorithm uses an additional parameter, ρ̄ ∈ R+ that caps the ρt in the update to wt+1:
min(ρ̄, ρt)δtzt. When ρ̄ is set to the largest possible importance sampling ratio, it does not
affect ρt in the update to wt and so we obtain the equivalence above. For smaller ρ̄, however,
V-trace(λ) is no longer simply an instance of Off-policy TD(λ). In the experiments that
follow, we investigate this simplified variant of V-trace(λ) that does not cap ρt and set c̄ = 1
as done in the original Retrace algorithm.

ABTD(ζ) for ζ ∈ [0, 1] uses λt = νt−1bt−1, with the following eligibility trace update:

zt = γt
νt−1

bt−1
bt−1λzt−1 + xt

= γtνt−1πt−1zt−1 + xt. (42)

with the following scalar parameters to define νt

νt
def
= ν(ψ(ζ), st, at)

def
= min

(
ψ(ζ),

1

max(b(at|st), π(at|st))

)
ψ(ζ)

def
= 2ζψ0 + max(0, 2ζ − 1)(ψmax − 2ψ0)

ψ0
def
=

1

maxs,a max(b(a|s), π(a|s))

ψmax
def
=

1

mins,a max(b(a|s), π(a|s))
.

The convergence properties of all three methods are similar to Off-policy TD(λ). They
are not guaranteed to converge under off-policy sampling with weighting db and function
approximation. With the addition of gradient corrections similar to GTD(λ), these algorithms
are convergent. For explicit theoretical results, see Mahmood et al. (2017) for ABQ with
gradient correction and Touati et al. (2018) for convergent versions of Retrace and Tree
Backup.

B.5 Emphatic-TD learning

Emphatic Temporal Difference learning, ETD(λ), provides an alternative strategy for
obtaining stability under off-policy sampling without computing gradients of the linear PBE.
The key idea is to incorporate some prior corrections so that the weighting d results in a
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positive definite matrix A. Given such an A, a TD(λ) algorithm—a semi-gradient algorithm—
can be shown to converge. Importantly, this allows for a stable off-policy algorithm with
only a single set of weights. Gradient-TD methods, on the other hand, use two stepsize
parameters and two weight vectors to achieve stability. In this section, we describe two
different variants of Emphatic-TD methods: ETD(λ) and ETD(λ, β), which was introduced
to reduce the variance of ETD(λ).

ETD(λ) minimizes a variant of the linear PBE defined in Equation 9, where the weighting
d is defined based on the followon weighting. The followon reflects (discounted) state
visitation under the target policy when doing excursions from the behavior: starting from
states sampled according to db. The followon is defined as

f(st)
def
= db(st) + γ(st)

∑
st−1,at−1

db(st−1)π(at−1|st−1)P (st|st−1, at−1) + . . . . (43)

The emphatic weighting then corresponds to m(st) = db(st)λ + (1 − λ)f(st). This is the
weighting used in the linear PBE in Equation 9, setting d(s) = m(s).

The Emphatic TD(λ) algorithm is specified by the following equations:

Ft ← ρt−1γtFt−1 + 1

Mt ←λt + (1− λt)Ft
zρt ← ρt

(
γtλz

ρ
t−1 +Mtxt

)
wt+1 ← wt + αδtz

ρ
t ,

with F0 = 1 and zρ0 = 0. The scalar estimate Ft is used to include the weighting
defined in Equation 43. To gain some intuition for this weighting, consider a setting
where γt = γ is constant and λ = 0. Then Mt = Ft =

∑t
j=0 γ

j
∏j
i=1 ρt−i, giving trace

zρt ← ρt

(
γtλz

ρ
t−1 +

∑t
j=0 γ

j
∏j
i=1 ρt−ixt

)
.

There are some similarities to the weighting in the Alternative-life TD(λ) trace in
Equation 5, where zρt ← ρt

(
γtλz

ρ
t−1 +

∏t
i=1 ρixt

)
. Both adjust the weighting on xt to

correct for—or adjust—the state distributions. Alternative-Life TD more aggressively
downweights states that would not have been visited under the target policy. ETD, on the
other hand, reweights based on how frequently the states would be seen when starting π as
an excursion from b.

Emphatic TD(λ) has strong convergence guarantees in the case of linear function
approximation. The ETD(λ) under off-policy training has been shown to converge in
expectation using the same expected update analysis used to show that TD(λ) converges
under on-policy training. Later, Yu (2015) extended this result to show that ETD(λ)
converges with probability one. Perhaps more practically relevant, this weighting also
resolves the issues raised by Kolter’s example (2011). Kolter’s example demonstrated that
for a particular choice of π and b, the solution to the linear PBE could result in arbitrarily
bad error compared with the best possible approximation in the function class. In other
words, even if the true value function can be well approximated by the function class, the
off-policy fixed point from the linear PBE with weighting d = db can result in an arbitrarily
poor approximation to the values. Hallak et al. (2016) showed that the fixed points of the
linear PBE with the emphatic weighting, on the other hand, do not suffer from this problem
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(see their Corollary 1). This result was actually generally shown for an extended ETD(λ)
method, called ETD(λ, β), which we describe next.

ETD(λ) was extended to include an additional scalar tuneable parameter β, to further
control variance due to prior corrections. The ETD(λ, β) algorithm updates are identical to
ETD(λ) except for the update to Ft:

Ft ← ρt−1βFt−1 + 1

If β = γ, then the update is identical to ETD(λ). If β = 0, then the update is identical to
Off-policy TD(λ), and there are a spectrum of methods in between. This β, then, introduces
bias to reduce variance in the followon trace for ETD. Hallak et al. (2016) showed that β
can be less than γ, and ETD(λ, β) can still enjoy the convergence properties of ETD(λ),
depending on the mismatch between the target and behavior policy. For more similar policies,
β can be closer to zero and still converge: it can behave like Off-policy TD(λ) and still
converge if the setting is almost on-policy. For a greater mismatch, β must be nearer to γ.
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